首页> 外文期刊>Composite Structures >Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure
【24h】

Use of material grading for enhanced buckling design of thin-walled composite rings/long cylinders under external pressure

机译:使用材料分级来增强薄壁复合材料环/长圆柱在外部压力下的屈曲设计

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a mathematical model for enhancing the buckling stability of composite, thin-walled rings/long cylinders under external pressure using radial material grading concept. The main structure to be analyzed is built of multi-angle fibrous laminated lay-ups having different volume fractions of the constituent materials within the individual plies. This leads to a piecewise grading of the material in the radial direction. The objective is to maximize the critical buckling pressure while preserving the total structural mass at a constant value equal to that of a baseline design. The fiber volume fractions are included among the standard design variables such as fiber orientation angles and ply thicknesses, which are used by many investigators in the field. The model employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately is given. The critical buckling pressure contours subject to the mass equality constraint are given for several types of anisotropic rings/long cylinders showing the functional dependence of the constrained objective function on the selected design variables. It is shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.
机译:本文提出了一种数学模型,该模型使用径向材料分级概念来增强复合材料薄壁环/长圆柱在外部压力下的屈曲稳定性。要分析的主要结构是由多角度的纤维层压叠层构成的,这些叠层叠层在各个层中的构成材料的体积分数不同。这导致材料在径向方向上分段分段。目的是使临界屈曲压力最大化,同时将总结构质量保持在等于基准设计的恒定值。纤维体积分数包括在标准设计变量中,例如纤维取向角和层厚度,这是本领域许多研究人员使用的变量。该模型采用经典的层压理论,其中给出了分别考虑有效轴向刚度和弯曲刚度的解析解决方案。针对几种类型的各向异性环/长圆柱体,给出了受质量相等约束的临界屈曲压力等值线,这些轮廓线显示了受约束的目标函数对所选设计变量的功能依赖性。结果表明,在实现所需的具有增强的稳定性极限的结构设计时,材料分级可对整个优化过程做出重大贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号