首页> 外文期刊>Composite Structures >Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams
【24h】

Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams

机译:梯度或/和非局部高阶剪切弹性梁的变分公式

获取原文
获取原文并翻译 | 示例

摘要

This paper covers a large variety of theoretical generic beam models including some small length scale terms. Strain gradient elasticity and Eringen's nonlocal elasticity models are applied to beam mechanics including Euler-Bernoulli, Timoshenko and higher-order shear beam models. The buckling and vibration behaviour of these generalized shear beam models is investigated for pinned-pinned boundary conditions. The variational formulation of these enriched beam models is given leading to consistent variation-ally-based boundary conditions. The paper first starts with the axial behaviour of gradient or nonlocal elasticity bars. The beam behaviour is then analyzed using a unified framework, where the kinematics classification is presented from a generalized gradient constitutive law. It is shown that higher-order shear beam models can be classified in a common gradient elasticity Timoshenko theory, whatever the shear strain distribution assumptions over the cross section. We show the kinematics equivalence between Bickford-Reddy higher-order shear beam model and Shi-Voyiadjis higher-order shear beam model, even if both models are statically not equivalent (from the stress calculation). This equivalence is highlighted on buckling and vibrations results. The model valid for macrostructures is generalized for micro or nanostructures using some nonlocal and gradient theories to account for small scale effects, in the axial and in the bending directions. We both use the Eringen's based integral theory and the gradient theory to derive the buckling and vibration differential equations. These two theories can be connected using a generalized hybrid nonlocal law. Eringen's model is compared to a stress gradient model, whereas the gradient elasticity theory is typically a strain gradient theory. The nonlocal framework is also developed in a variational consistent framework, for bending, vibrations and buckling configurations. The nonlocality is shown to be equivalent to higher-order inertia modelling for the dynamics analysis. Buckling and vibrations solutions are presented for the nonlocal higher-order beam/column models with pinned-pinned boundary conditions. We finally analyse the main characteristics of both nonlocal and gradient theories to capture the small scale effects for micro and nanostructures. Stiffening or softening effect of gradient or nonlocal elasticity models are discussed for the buckling and the vibrations analyses.
机译:本文涵盖了多种理论通用梁模型,包括一些小长度比例项。应变梯度弹性和Eringen的非局部弹性模型应用于梁力学,包括Euler-Bernoulli,Timoshenko和高阶剪切梁模型。在销钉-钉扎边界条件下研究了这些广义剪切梁模型的屈曲和振动行为。给出了这些富集的光束模型的变分公式,从而得出一致的基于变分的边界条件。本文首先从梯度或非局部弹性杆的轴向行为开始。然后使用统一框架分析光束行为,其中运动学分类是根据广义梯度本构关系给出的。结果表明,无论横截面上的剪切应变分布假设如何,均可以按照通用的梯度弹性Timoshenko理论对高阶剪切梁模型进行分类。我们显示了Bickford-Reddy高阶剪切梁模型和Shi-Voyiadjis高阶剪切梁模型之间的运动学等效性,即使两个模型在静态上不是等效的(根据应力计算)。这种等效性在屈曲和振动结果上突出显示。对于微观结构或纳米结构,使用一些非局部和梯度理论将对宏观结构有效的模型推广,以解决轴向和弯曲方向的小比例效应。我们都使用基于Eringen的积分理论和梯度理论来推导屈曲和振动微分方程。可以使用广义混合非局部定律将这两个理论联系起来。将Eringen模型与应力梯度模型进行比较,而梯度弹性理论通常是应变梯度理论。非局部框架也以变化一致的框架开发,用于弯曲,振动和屈曲配置。所示的非局部性等效于动力学分析的高阶惯性建模。提出了具有固定销钉边界条件的非局部高阶梁/柱模型的屈曲和振动解决方案。最后,我们分析了非局部理论和梯度理论的主要特征,以捕获微观和纳米结构的小规模效应。讨论了梯度或非局部弹性模型的变硬或变软效果,以进行屈曲和振动分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号