首页> 外文期刊>Composite Structures >Modeling matrix cracking in composite rotor blades within VABS framework
【24h】

Modeling matrix cracking in composite rotor blades within VABS framework

机译:在VABS框架内模拟复合材料转子叶片中的基体裂纹

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with modeling of the first damage mode (i.e. matrix micro-cracking) in helicopter rotor or wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter rotor or wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These helicopter rotor or wind turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference lines. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. We detect the matrix cracking using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. We set the strain variable which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. To investigate the matrix failure model, three examples are presented which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load. Finally, the stiffness degradation of composite cross-section of rotor blade due to matrix micro-cracking is correlated to the life of composite rotor blade using damage accumulation model. At the end, an empirical equation is given for the Stress Intensity Factor (SIF) to simulate the matrix micro-crack growth in future.
机译:本文研究了直升机旋翼或风力涡轮机叶片中的第一损伤模式(即基质微裂纹)的建模以及这如何影响整体截面刚度。直升机旋翼或风力涡轮机旋翼系统在高度动态且不稳定的环境中运行,导致系统中存在严重的振动负载。反复暴露于这种负载条件下会导致复合转子叶片的损坏。这些直升机旋翼或风力涡轮机叶片通常由纤维增强的层压复合材料制成,并表现出各种竞争性的破坏模式,例如基体微裂纹,分层和纤维断裂。需要研究复合材料中各种关键损伤模式下复合转子系统的行为,以开发结构健康监测(SHM)系统。基于几何非线性3-D弹性理论,将每个叶片建模为梁。因此,每个叶片分为沿横截面的二维分析和沿光束参考线的非线性一维分析。这里使用两种不同的工具进行完整的3D分析:VABS用于2D横截面分析,GEBT用于1D光束分析。在当前工作中使用了基于矩阵的基于物理的失效模型,用于压缩和拉伸载荷。我们使用两个失效准则检测基体裂纹:基于恢复场的压缩基体失效和拉伸基体失效。我们设置应变变量,该变量驱动基体开裂的损伤变量,该损伤变量用于估计降低的截面刚度。本文提出的程序在VABS中作为矩阵微裂纹建模模块实现。为了研究基体破坏模型,给出了三个示例,这些示例通过改变施加的循环载荷来说明基体开裂对截面刚度的影响。最后,利用损伤累积模型,将基体微裂纹引起的转子叶片复合截面的刚度退化与复合材料转子叶片的寿命相关联。最后,给出了应力强度因子(SIF)的经验方程,以模拟将来的基体微裂纹增长。

著录项

  • 来源
    《Composite Structures》 |2014年第4期|62-76|共15页
  • 作者

    Hemaraju Pollayi; Wenbin Yu;

  • 作者单位

    Solid Mechanics and Structures Laboratory (SMS Lab), Department of Mechanical and Aerospace Engineering, Utah State University, UMC 4130, Logan, UT 84322-4130, USA;

    Solid Mechanics and Structures Laboratory (SMS Lab), Department of Mechanical and Aerospace Engineering, Utah State University, UMC 4130, Logan, UT 84322-4130, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wind turbine blades; Matrix cracking; Damage variable; SHM; VABS; GEBT;

    机译:风力涡轮机叶片;基质开裂;伤害变量;SHM;VABS;GEBT;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号