首页> 外文期刊>Composite Structures >Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories
【24h】

Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories

机译:基于粘滞-非局域-皮弹性理论的嵌入式压电纳米板动态稳定性的差分培养和正交Bolotin方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper is concerned with the dynamic stability response of an embedded piezoelectric nanoplate made of polyvinylidene fluoride (PVDF). In order to present a realistic model, the material properties of nanoplate are assumed viscoelastic using Kelvin-Voigt model. The visco-nanoplate is surrounded by viscoelastic medium which is simulated by orthotropic visco-Pasternak foundation. The PVDF visco-nanoplate is subjected to an applied voltage in the thickness direction. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A novel numerical method namely as differential cubature method (DCM) in conjunction with the Bolotin's method is applied to obtain the dynamic instability region (DIR) and parametric resonance responses of the visco-nanoplate. The effects of different parameters such as nonlocal parameter, external electric voltage, structural damping, boundary condition, dimension of nanoplate and viscoelastic medium are shown on DIR and parametric resonance frequency of structure. The accuracy of the proposed method is verified by comparing its numerical prediction with other theoretical and experimental published works as well as solution of system with differential quadrature method (DQM). Results indicate that the external electric voltage increases the frequency of the system especially in thick nanoplates. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文关注聚偏二氟乙烯(PVDF)制成的嵌入式压电纳米板的动态稳定性响应。为了提供一个逼真的模型,使用开尔文-沃格模型(Kelvin-Voigt model)假设纳米板的材料特性为粘弹性。粘纳米板被粘弹性介质包围,该粘弹性介质由正交各向异性的粘弹性-帕斯泰纳克基础模拟。 PVDF粘纳米板在厚度方向上施加电压。为了满足麦克斯韦方程,将电势分布假定为半余弦和线性变化的组合。采用非局部Mindlin板理论,基于能量法和汉密尔顿原理推导了控制方程。一种新颖的数值方法,即差分培养法(DCM)与Bolotin方法相结合,被用于获得粘纳米板的动态不稳定性区域(DIR)和参数共振响应。在DIR和结构的参数共振频率上显示了非局部参数,外部电压,结构阻尼,边界条件,纳米板尺寸和粘弹性介质等不同参数的影响。通过将其数值预测结果与其他理论和实验发表的著作以及采用差分正交方法(DQM)的系统解进行比较,验证了该方法的准确性。结果表明,外部电压会增加系统的频率,特别是在厚纳米板中。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号