首页> 外文期刊>Composite Structures >Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography
【24h】

Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography

机译:使用X射线显微断层摄影术重建的介观体素模型预测3D编织复合材料的线性和非线性行为

获取原文
获取原文并翻译 | 示例

摘要

Mesoscopic representative volume cells (RVCs), reflecting the internal structure of a 3-Dimensional (3D) orthogonal weave composite, were reconstructed in this work from the X-ray micro-tomography (mu CT) images. In comparison with the conventional idealized modelling strategy, the proposed voxel models reproduces successfully the varied yarn cross-section and the non-fully-symmetric undulated yarn path. It is demonstared that local details of the yarn geometry have small influence on the homogenized elastic properties but play key role in predicting the damage and failure process. Continuum damage mechanics models were formulated and implemented in the user subroutine UMAT of ABAQUS/Standard. The strength of the composite based on the model generated from the mu CT images shows better agreement with the experimental results compared to the idealized one. The statistic distribution of damage variable is employed to describe the overall damage intensity when the peak stress value is reached. The quantitative analysis shows that the reproduced unevenness and the initial imperfections of the yarns are prone to cause and accumulate damage. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在这项工作中,从X射线显微断层扫描(mu CT)图像重建了反映3维(3D)正交编织复合材料内部结构的介观代表性体积单元(RVC)。与传统的理想化建模策略相比,所提出的体素模型成功地再现了变化的纱线横截面和非完全对称的起伏纱线路径。值得注意的是,纱线几何形状的局部细节对均质弹性特性的影响很小,但在预测损坏和破坏过程中起着关键作用。在ABAQUS / Standard的用户子例程UMAT中制定并实现了连续损伤力学模型。与理想化相比,基于从mu CT图像生成的模型的复合材料的强度与实验结果显示出更好的一致性。损伤变量的统计分布用于描述达到峰值应力值时的总体损伤强度。定量分析表明,纱线的重现不均匀性和最初的瑕疵容易引起并积累损伤。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号