首页> 外文期刊>Composite Structures >Nonlinear effects in fracture induced failure of compressively loaded fiber reinforced composites
【24h】

Nonlinear effects in fracture induced failure of compressively loaded fiber reinforced composites

机译:压缩载荷下纤维增强复合材料断裂引起的非线性效应

获取原文
获取原文并翻译 | 示例

摘要

The present paper deals with the macroscopic compressive failure of periodic elastic fiber reinforced composites related to local buckling instabilities promoted by matrix or fiber/matrix micro-cracks under unilateral self-contact. The theoretical modeling of instability and bifurcation phenomena for a microcracked composite material is firstly examined by considering a continuum homogenization approach and a rate formulation. The effects of non-standard rate contributions owing to the full finite deformation formulation adopted to model crack self-contact and depending on both the contact pressure and the deformation gradient rate are highlighted, by determining their influence on macroscopic critical loads at the onset of instability and bifurcation and on corresponding deformation modes. Numerical applications carried out by means of a coupled FE approach are provided with reference to macroscopic uniaxial loading paths and a comprehensive parametric analysis with respect to the main microstructural geometrical parameters governing the failure behavior of the composite solid is carried out. The results show the notable influence of the above non-standard contributions on both critical loads and deformation modes: if they are not included in the analysis as in simplified crack contact interface formulations, a large underestimation of the real failure load of the microcracked composite is obtained.
机译:本文研究了周期性弹性纤维增强复合材料的宏观压缩破坏,该破坏与基质或纤维/基质微裂纹在单侧自接触下引起的局部屈曲不稳定性有关。首先通过考虑连续均质化方法和速率公式来研究微裂纹复合材料的不稳定性和分叉现象的理论模型。通过确定不稳定状态开始时对宏观临界载荷的影响,可以突出非标准速率贡献的影响,这是由于采用了用于建模裂纹自接触的完全有限变形公式,并且取决于接触压力和变形梯度速率而产生的。分叉以及相应的变形模式。参考宏观单轴加载路径提供了通过耦合有限元方法进行的数值应用,并对控制复合材料固体破坏行为的主要微观结构几何参数进行了全面的参数分析。结果表明,上述非标准贡献对临界载荷和变形模式都有显着影响:如果不像简化的裂纹接触界面公式那样将它们包括在分析中,则将大大低估了微裂纹复合材料的实际破坏载荷获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号