首页> 外文期刊>Complex Analysis and Operator Theory >Weakly Singular and Microscopically Hypersingular Load Perturbation for a Nonlinear Traction Boundary Value Problem: a Functional Analytic Approach
【24h】

Weakly Singular and Microscopically Hypersingular Load Perturbation for a Nonlinear Traction Boundary Value Problem: a Functional Analytic Approach

机译:非线性牵引边值问题的弱奇异和微观超奇异载荷摄动:一种功能分析方法

获取原文
获取原文并翻译 | 示例

摘要

Let Ω i and Ω o be two bounded open subsets of mathbbRn{{mathbb{R}}^{n}} containing 0. Let G i be a (nonlinear) map from ¶Wi×mathbbRn{partialOmega^{i}times {mathbb{R}}^{n}} to mathbbRn{{mathbb{R}}^{n}} . Let a o be a map from ∂Ω o to the set Mn(mathbbR){M_{n}({mathbb{R}})} of n × n matrices with real entries. Let g be a function from ∂Ω o to mathbbRn{{mathbb{R}}^{n}} . Let γ be a positive valued function defined on a right neighborhood of 0 in the real line. Let T be a map from ]1-(2),+¥[×Mn(mathbbR){]1-(2),+infty[times M_{n}({mathbb{R}})} to Mn(mathbbR){M_{n}({mathbb{R}})} . Then we consider the problem $left{ {ll} {{rm div}}, (T(omega,Du))=0 &quad {{rm in}} ;Omega^{o} setminusepsilon{{rm cl}} Omega^{i}, -T(omega,Du(x))nu_{epsilonOmega^{i}}(x)=frac{1}{gamma(epsilon)}G^{i}({x}/{epsilon}, gamma(epsilon)epsilon^{-1} ({rm log} , epsilon)^{-delta_{2,n}} u(x)) & quad forall x in epsilonpartialOmega^{i}, T(omega, Du(x)) nu^{o}(x)=a^{o}(x)u(x)+g(x) & quad forall x in partial Omega^{o}, right.$left{ begin{array}{ll} {{rm div}}, (T(omega,Du))=0 &quad {{rm in}} ;Omega^{o} setminusepsilon{{rm cl}} Omega^{i}, -T(omega,Du(x))nu_{epsilonOmega^{i}}(x)=frac{1}{gamma(epsilon)}G^{i}({x}/{epsilon}, gamma(epsilon)epsilon^{-1} ({rm log} , epsilon)^{-delta_{2,n}} u(x)) & quad forall x in epsilonpartialOmega^{i}, T(omega, Du(x)) nu^{o}(x)=a^{o}(x)u(x)+g(x) & quad forall x in partial Omega^{o}, end{array} right.
机译:令Ω i 和Ω o 是mathbbR n {{mathbb {R}} ^ {n}}的两个有界开放子集,其包含0。令G i 是来自¶W i ×mathbbR n {partialOmega ^ {i} times {mathbb {R}}的(非线性)映射^ {n}}至mathbbR n {{mathbb {R}} ^ {n}}。假设 o 是从∂Ω o 到集合M n (mathbbR){M_ {n}({mathbb {R} })}个n×n个实数矩阵。令g为从∂Ω o 到mathbbR n {{mathbb {R}} ^ {n}}的函数。设γ是在实线的右邻域0上定义的正值函数。令T为从] 1-(2 / n),+¥[×M n (mathbbR){] 1-(2 / n),+ infty [times M_ {n}( {mathbb {R}})}到M n (mathbbR){M_ {n}({mathbb {R}})}}。然后我们考虑问题$ left {{ll} {{rm div}},(T(omega,Du))= 0&quad {{rm in}}; Omega ^ {o} setminusepsilon {{rm cl}} Omega ^ {i},-T(omega,Du(x))nu_ {epsilonOmega ^ {i}}(x)= frac {1} {gamma(epsilon)} G ^ {i}({x} / {epsilon}, γ(epsilon)epsilon ^ {-1}({rm log},epsilon)^ {-delta_ {2,n}} u(x))&quadil for epsilonpartialOmega ^ {i},T(omega,Du( x))nu ^ {o}(x)= a ^ {o}(x)u(x)+ g(x)&quad forall inmega Omega ^ {o},right。$ left {begin {array} {ll} {{rm div}},(T(omega,Du))= 0&quad {{rm in}}; Omega ^ {o} setminusepsilon {{rm cl}} Omega ^ {i},-T(omega ,Du(x))nu_ {epsilonOmega ^ {i}}(x)= frac {1} {gamma(epsilon)} G ^ {i}({x} / {epsilon},gamma(epsilon)epsilon ^ {- 1}({rm log},epsilon)^ {-delta_ {2,n}} u(x))&quadil for all x in epsilonpartialOmega ^ {i},T(omega,Du(x))nu ^ {o} (x)= a ^ {o}(x)u(x)+ g(x)&quad for all x in part Omega ^ {o},end {array} right。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号