首页> 外文期刊>Communications Surveys & Tutorials, IEEE >A Survey on Anomalous Behavior Detection for Elderly Care Using Dense-Sensing Networks
【24h】

A Survey on Anomalous Behavior Detection for Elderly Care Using Dense-Sensing Networks

机译:使用致密传感网络对老年人护理的异常行为检测调查

获取原文
获取原文并翻译 | 示例

摘要

Facing the gradual ageing society, elderly people living independently are in need of serious attention. In order to assist them to live in a safer environment, the increasing cost of nursing care and the shortage of health-care workers urges the demand of home-based assisted living in recent times. Therefore, home-based health-care has become an active research domain, particularly the abnormal activities detection involving information and communications technologies. This survey paper highlights this kind of technologies that exist for human anomalous behavior detection. It also reviews and discusses the current research trends, their outcomes and effects in elderly care. Our study is mainly focused on dense sensing network based activities and anomaly detection, which are robust to environment change, non-intrusive, user-friendly in the sense that do not require the occupant to wear any devices. From our study, we observe that employing sensor fusion techniques could significantly increases the efficiency of dense sensing network. In addition, sensor fusion models ensure a high level of robustness and effectiveness compared to the traditional methods.
机译:面对渐进的老龄化社会,独立生活的老年人需要严重关注。为了帮助他们生活在更安全的环境中,护理的不断增加和卫生保健工作者短缺促使近来家庭辅助生活的需求。因此,家庭的医疗保健已成为一个活跃的研究领域,特别是涉及信息和通信技术的异常活动。该调查纸突出了人类异常行为检测存在的这种技术。它还审查并讨论了当前的研究趋势,他们的老年护理的结果和效果。我们的研究主要集中在密集的传感网络的活动和异常检测中,对环境变化,非侵扰性,用户友好的意义上不需要占用者佩戴任何设备。从我们的研究来看,我们观察到采用传感器融合技术可以显着提高密集传感网络的效率。此外,与传统方法相比,传感器融合模型确保了高水平的鲁棒性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号