首页> 外文期刊>Communications Surveys & Tutorials, IEEE >Detecting Internet Abuse by Analyzing Passive DNS Traffic: A Survey of Implemented Systems
【24h】

Detecting Internet Abuse by Analyzing Passive DNS Traffic: A Survey of Implemented Systems

机译:通过分析被动DNS流量来检测Internet滥用:已实施系统的调查

获取原文
获取原文并翻译 | 示例

摘要

Despite the ubiquitous role of domain name system (DNS) in sustaining the operations of various Internet services (domain name to IP address resolution, e-mail, Web), DNS was abused/misused to perform large-scale attacks that affected millions of Internet users. To detect and prevent threats associated to DNS, researchers introduced passive DNS replication and analysis as an effective alternative approach for analyzing live DNS traffic. In this paper, we survey state of the art systems that utilized passive DNS traffic for the purpose of detecting malicious behaviors on the Internet. We highlight the main strengths and weaknesses of the implemented systems through an in-depth analysis of the detection approach, collected data, and detection outcomes. We highlight an incremental implementation pattern in the studied systems with similarities in terms of the used datasets and detection approach. Furthermore, we show that almost all studied systems implemented supervised machine learning, which has its own limitations. In addition, while all surveyed systems required several hours or even days before detecting threats, we illustrate the ability to enhance performance by implementing a system prototype that utilizes big data analytics frameworks to detect threats in near real-time. We demonstrate the feasibility of our threat detection prototype through real-life examples, and provide further insights for future work toward analyzing DNS traffic in near real-time.
机译:尽管域名系统(DNS)在维持各种Internet服务(域名到IP地址解析,电子邮件,Web)的运行中具有无处不在的作用,但DNS被滥用/滥用于执行大规模攻击,该攻击影响了数百万个Internet用户。为了检测和防止与DNS相关的威胁,研究人员引入了被动DNS复制和分析,作为分析实时DNS流量的有效替代方法。在本文中,我们调查了利用被动DNS流量来检测Internet上恶意行为的最新系统。我们通过对检测方法,收集的数据和检测结果的深入分析,突出了已实施系统的主要优点和缺点。我们重点介绍了所研究系统中的增量实施模式,在使用的数据集和检测方法方面具有相似性。此外,我们证明几乎所有研究的系统都实施了监督机器学习,这有其自身的局限性。此外,虽然所有被调查的系统在检测到威胁之前都需要几个小时甚至几天,但我们展示了通过实施利用大数据分析框架以近乎实时的方式检测系统威胁的系统来增强性能的能力。我们通过实际示例演示了威胁检测原型的可行性,并为将来的工作提供了更深入的见解,以近乎实时地分析DNS流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号