首页> 外文期刊>Communications in Statistics >Nonparametric estimation of random effects densities in a linear mixed-effects model with Fourier-oscillating noise density
【24h】

Nonparametric estimation of random effects densities in a linear mixed-effects model with Fourier-oscillating noise density

机译:具有傅里叶振荡噪声密度的线性混合效应模型中随机效应密度的非参数估计

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the study of nonparametric estimation of random effects densities in a linear mixed-effects model. In the first case where noise distribution is fully known, we apply nonparametric deconvolution tools to construct mean consistent estimators with respect to the -error and then study convergence rates of the proposed estimators when noise density is Fourier-oscillating. In the second case where the random noises are assumed to be the uniform distribution on with an unknown a 0, we propose an estimator for a and then inherit the methodologies in the case of known noise distribution to construct necessary estimators which are also shown to be mean consistency. Some numerical results in the first case of the random noises are presented to illustrate the methodology.
机译:本文致力于研究线性混合效应模型中随机效应密度的非参数估计研究。在噪声分布完全已知的第一种情况下,我们应用非参数解卷积工具,以构造指示相对于-Error的一致估计,然后在噪声密度傅里叶振荡时研究所提出的估计器的收敛速率。在将随机噪声被假定为未知A> 0的均匀分布的第二种情况下,我们提出了一种用于A的估计器,然后在已知的噪声分布的情况下继承方法,以构建也显示的必要估计器意味着一致。提出了一种随机噪声的第一种情况下的一些数值结果以说明方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号