首页> 外文期刊>Communications in Statistics >Leverages and Influential Observations in a Regression Model with Autocorrelated Errors
【24h】

Leverages and Influential Observations in a Regression Model with Autocorrelated Errors

机译:利用自相关误差在回归模型中利用和影响的影响

获取原文
获取原文并翻译 | 示例

摘要

This article deals with the general form of the hat matrix and the DFBETA measure to detect the influential observations and the leverages in the linear regression model with more than one regressor when the errors are from AR(1) and AR(2) processes. Previous studies dealing with the influential observations and the leverages in the constant mean model and regression through the origin model are obtained as special cases. To demonstrate the utility of the hat matrix and the DFBETA measure, two numerical examples based on the ice cream consumption data with AR(1) errors and the Fox-Hartnagel data with AR(2) errors are analyzed. The results show that the parameter of the autoregressive process affects the influential and leverage points.
机译:本文涉及帽子矩阵的一般形式和DFBETA测量,以检测当误差来自AR(1)和AR(2)工艺时,在线性回归模型中检测有影响性观察和利用。以前的研究处理通过原始模型的恒定平均模型和回归中的影响力观察和杠杆的研究是特殊情况。为了证明帽子矩阵和DFBETA测量的效用,分析了基于冰淇淋消耗数据的两个数值示例,以及使用AR(2)误差的冰淇淋消耗数据和狐狸-HARTNAGEL数据。结果表明,自回归过程的参数会影响有影响力和杠杆点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号