首页> 外文期刊>Communications in Statistics - Simulation and Computation >On the Performance of Sequential Regression Multiple Imputation Methods with Non Normal Error Distributions
【24h】

On the Performance of Sequential Regression Multiple Imputation Methods with Non Normal Error Distributions

机译:具有非正态误差分布的序贯回归多重插补方法的性能

获取原文
获取原文并翻译 | 示例

摘要

Sequential regression multiple imputation has emerged as a popular approach for handling incomplete data with complex features. In this approach, imputations for each missing variable are produced based on a regression model using other variables as predictors in a cyclic manner. Normality assumption is frequently imposed for the error distributions in the conditional regression models for continuous variables, despite that it rarely holds in real scenarios. We use a simulation study to investigate the performance of several sequential regression imputation methods when the error distribution is flat or heavy tailed. The methods evaluated include the sequential normal imputation and its several extensions which adjust for non normal error terms. The results show that all methods perform well for estimating the marginal mean and proportion, as well as the regression coefficient when the error distribution is flat or moderately heavy tailed. When the error distribution is strongly heavy tailed, all methods retain their good performances for the mean and the adjusted methods have robust performances for the proportion; but all methods can have poor performances for the regression coefficient because they cannot accommodate the extreme values well. We caution against the mechanical use of sequential regression imputation without model checking and diagnostics.
机译:顺序回归多重插补已成为处理具有复杂特征的不完整数据的一种流行方法。在这种方法中,基于回归模型,使用其他变量作为预测变量,以循环方式基于每个回归变量产生估算值。在连续变量的条件回归模型中,常对误差分布强加正态假设,尽管在实际场景中极少成立。我们使用仿真研究来研究当误差分布为平坦或重尾时几种顺序回归插补方法的性能。评估的方法包括顺序法向插补及其对非法线误差项进行调整的几种扩展。结果表明,当误差分布为平坦或中度重尾时,所有方法在估计边际均值和比例以及回归系数方面均表现良好。当误差分布严重拖尾时,所有方法均保持均值良好的性能,而调整后的方法对于比例具有稳健的性能。但是所有方法对回归系数的性能都较差,因为它们不能很好地适应极值。我们警告不要在没有模型检查和诊断的情况下机械使用顺序回归插补法。

著录项

  • 来源
  • 作者

    Yulei He;

  • 作者单位

    Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA;

    Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, Michigan, USA;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号