首页> 外文期刊>Communications in Statistics - Simulation and Computation >A Genetic Algorithm Based Modification on the LTS Algorithm for Large Data Sets
【24h】

A Genetic Algorithm Based Modification on the LTS Algorithm for Large Data Sets

机译:基于遗传算法的大数据集LTS算法的改进

获取原文
获取原文并翻译 | 示例

摘要

The authors introduce an algorithm for estimating the least trimmed squares (LTS) parameters in large data sets. The algorithm performs a genetic algorithm search to form a basic subset that is unlikely to contain outliers. Rousseeuw and van Driessen (200618. Rousseeuw , P. J. , van Driessen , K. ( 2006 ). Computing LTS regression for large data sets . Data Mining and Knowledge Discovery 12 : 29 - 45 . [CrossRef], [Web of Science ®]View all references) suggested drawing independent basic subsets and iterating C-steps many times to minimize LTS criterion. The authors 'algorithm constructs a genetic algorithm to form a basic subset and iterates C-steps to calculate the cost value of the LTS criterion. Genetic algorithms are successful methods for optimizing nonlinear objective functions but they are slower in many cases. The genetic algorithm configuration in the algorithm can be kept simple because a small number of observations are searched from the data. An R package is prepared to perform Monte Carlo simulations on the algorithm. Simulation results show that the performance of the algorithm is suitable for even large data sets because a small number of trials is always performed.
机译:作者介绍了一种用于估计大型数据集中最小修剪平方(LTS)参数的算法。该算法执行遗传算法搜索以形成不太可能包含异常值的基本子集。 Rousseeuw和van Driessen(200618. Rousseeuw,PJ,van Driessen,K.(2006)。计算大型数据集的LTS回归。数据挖掘和知识发现12:29-45。[CrossRef],[Web ofScience®]查看所有参考文献)建议绘制独立的基本子集并多次迭代C步骤以最小化LTS准则。作者的算法构造了一个遗传算法来形成一个基本子集,并迭代C步以计算LTS准则的成本值。遗传算法是优化非线性目标函数的成功方法,但在许多情况下它们的速度较慢。由于从数据中搜索了少量观察值,因此可以简化算法中的遗传算法配置。准备一个R包以对该算法执行蒙特卡洛模拟。仿真结果表明,该算法的性能甚至适用于大型数据集,因为始终进行少量试验。

著录项

  • 来源
  • 作者

  • 作者单位

    Department of Econometrics, Istanbul University, Beyazit, Istanbul;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号