首页> 外文期刊>Communications in Statistics >A new large sample goodness of fit test for multivariate normality based on chi squared probability plots
【24h】

A new large sample goodness of fit test for multivariate normality based on chi squared probability plots

机译:基于CHI平方概率绘制的多变量正常性的新型拟合试验的新型良好

获取原文
获取原文并翻译 | 示例

摘要

Based on a chi square transform of the multivariate normal data set, we proposed a technique for testing multinormality which is the sum of interpoint squared distances between an ordered set of the transformed observations and the set of the population pth quantiles of the chi squared distribution. The critical values of the test were evaluated for different sample sizes and random vector dimensions through extensive simulations. The empirical type-I-error rates and powers of the proposed test were compared with those of some other well known tests for MVN with the proposed test showing excellent results at large sample sizes.
机译:基于多变量正常数据集的CHI方形变换,我们提出了一种测试多种正种的技术,该技术是所订购的变换观测和群体平方分布的群体PTH分量的排序集和集合PTH定量集之间的间接平方距离的总和。通过广泛的模拟评估对不同样本大小和随机向量维度进行测试的临界值。将所提出的测试的经验类型-I误差率和功率与MVN的其他一些众所周知的测试进行比较,其中提出的试验显示出在大样本尺寸的优异结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号