首页> 外文期刊>Communications in Statistics. B, Simulation and Computation >Testing Goodness of Fit for Parametric Families of Copulas—Application to Financial Data
【24h】

Testing Goodness of Fit for Parametric Families of Copulas—Application to Financial Data

机译:测试Copulas参数族的拟合优度—在财务数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

This article suggests a chi-square test of fit for parametric families of bivariate copulas. The marginal distribution functions are assumed to be unknown and are estimated by their empirical counterparts. Therefore, the standard asymptotic theory of the test is not applicable, but we derive a rule for the determination of the appropriate degrees of freedom in the asymptotic chi-square distribution. The behavior of the test under H_0 and for selected alternatives is investigated by Monte Carlo simulation. The test is applied to investigate the dependence structure of daily German asset returns. It turns out that the Gauss copula is inappropriate to describe the dependencies in the data. A t_v -copula with low degrees of freedom performs better.
机译:本文提出了适用于双变量copulas参数族的卡方检验。假定边际分布函数是未知的,并由其经验对应物估计。因此,测试的标准渐近理论不适用,但是我们推导了确定渐近卡方分布中适当自由度的规则。通过蒙特卡洛模拟研究了在H_0和选择的替代品下的测试行为。该检验用于调查德国每日资产收益的依存关系。事实证明,高斯copula不适合描述数据中的依存关系。自由度低的t_v -copula表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号