首页> 外文期刊>Communications in Statistics. B, Simulation and Computation >Pivotal Quantities Based on Sequential Data: A Bootstrap Approach
【24h】

Pivotal Quantities Based on Sequential Data: A Bootstrap Approach

机译:基于顺序数据的关键数量:一种引导方法

获取原文
获取原文并翻译 | 示例

摘要

A bootstrap algorithm is provided for obtaining a confidence interval for the mean of a probability distribution when sequential data are considered. For this kind of data the empirical distribution can be biased but its bias is bounded by the coefficient of variation of the stopping rule associated with the sequential procedure. When using this distribution for resampling the validity of the bootstrap approach is established by means of a series expansion of the corresponding pivotal quantity. A simulation study is carried out using Wang and Tsiatis type tests and considering the normal and exponential distributions to generate the data. This study confirms that for moderate coefficients of variation of the stopping rule, the bootstrap method allows adequate confidence intervals for the parameters to be obtained, whichever is the distribution of data.
机译:提供了一种自举算法,用于在考虑顺序数据时获得概率分布平均值的置信区间。对于此类数据,经验分布可以有偏差,但其偏差受与顺序过程相关的停止规则的变化系数限制。当使用该分布进行重采样时,引导程序的有效性通过相应枢轴量的系列扩展来确定。使用Wang和Tsiatis类型测试并考虑正态和指数分布来生成数据,进行了模拟研究。这项研究证实,对于停止规则的适度变化系数,自举方法可为要获取的参数提供足够的置信区间,以数据的分布为准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号