首页> 外文期刊>Communications in Statistics. B, Simulation and Computation >Measuring Time Series Predictability Using Support Vector Regression
【24h】

Measuring Time Series Predictability Using Support Vector Regression

机译:使用支持向量回归来测量时间序列的可预测性

获取原文
获取原文并翻译 | 示例

摘要

Most studies involving statistical time series analysis rely on assumptions of linearity, which by its simplicity facilitates parameter interpretation and estimation. However, the linearity assumption may be too restrictive for many practical applications. The implementation of nonlinear models in time series analysis involves the estimation of a large set of parameters, frequently leading to overfitting problems. In this article, a predictability coefficient is estimated using a combination of nonlinear autoregressive models and the use of support vector regression in this model is explored. We illustrate the usefulness and interpretability of results by using electroencephalographic records of an epileptic patient.
机译:大多数涉及统计时间序列分析的研究都依赖于线性假设,因为线性假设的简单性有助于参数解释和估计。但是,线性假设对于许多实际应用而言可能过于严格。时间序列分析中非线性模型的实现涉及大量参数的估计,经常会导致过度拟合问题。在本文中,使用非线性自回归模型的组合来估计可预测性系数,并探索在该模型中使用支持向量回归。我们通过使用癫痫患者的脑电图记录说明结果的有用性和可解释性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号