首页> 外文期刊>Communications in Statistics >Correlation-Type Goodness of Fit Test for Extreme Value Distribution Based on Simultaneous Closeness
【24h】

Correlation-Type Goodness of Fit Test for Extreme Value Distribution Based on Simultaneous Closeness

机译:基于同时紧密度的极值分布拟合检验的相关类型优度

获取原文
获取原文并翻译 | 示例

摘要

In reliability studies, one typically would assume a lifetime distribution for the units under study and then carry out the required analysis. One popular choice for the lifetime distribution is the family of two-parameter Weibull distributions (with scale and shape parameters) which, through a logarithmic transformation, can be transformed to the family of two-parameter extreme value distributions (with location and scale parameters). In carrying out a parametric analysis of this type, it is highly desirable to be able to test the validity of such a model assumption. A basic tool that is useful for this purpose is a quantile-quantile (QQ) plot, but in its use, the issue of the choice of plotting position arises. Here, by adopting the optimal plotting points based on Pitman closeness criterion proposed recently by Balakrishnan et al. (2010b), and referred to as simultaneous closeness probability (SCP) plotting points, we propose a correlation-type goodness of fit test for the extreme value distribution. We compute the SCP plotting points for various sample sizes and use them to determine the mean, standard deviation and critical values for the proposed correlation-type test statistic. Using these critical values, we carry out a power study, similar to the one carried out by Kinnison (1989), through which we demonstrate that the use of SCP plotting points results in better power than with the use of mean ranks as plotting points and nearly the same power as with the use of median ranks. We then demonstrate the use of the SCP plotting points and the associated correlation-type test for Weibull analysis with an illustrative example. Finally, for the sake of comparison, we also adapt two statistics proposed by Can and Koehler (1990), in the context of probability-probability (PP) plots, based on SCP plotting points and compare their performance to those based on mean ranks. The empirical study also reveals that the tests from the QQ plot have better power than those from the PP plot.
机译:在可靠性研究中,通常会假设所研究单元的寿命分布,然后进行所需的分析。寿命分布的一个流行选择是两参数威布尔分布族(带有比例和形状参数),通过对数变换,可以将其转换为两参数极值分布族(带有位置和比例参数) 。在进行这种类型的参数分析时,非常需要能够测试这种模型假设的有效性。可用于此目的的基本工具是分位数(QQ)绘图,但是在使用中,出现了绘图位置选择的问题。在这里,通过采用基于Balakrishnan等人最近提出的Pitman贴近度准则的最佳标绘点。 (2010b),并称为同时接近概率(SCP)绘制点,我们提出了一种针对极值分布的相关类型拟合度检验。我们计算各种样本量的SCP绘图点,并使用它们来确定所建议的相关类型检验统计量的平均值,标准差和临界值。利用这些临界值,我们进行了一项功效研究,类似于Kinnison(1989)进行的一项研究,通过该研究,我们证明了使用SCP绘制点比使用均值等级作为绘制点和使用SCP绘制点具有更好的功效。与使用中位数排名几乎具有相同的功效。然后,我们以一个说明性示例演示了SCP绘制点和相关的相关类型检验在威布尔分析中的使用。最后,为便于比较,我们还改编了Can和Koehler(1990)提出的两个统计数据,在概率概率(PP)图的背景下,基于SCP绘制点,并将其性能与基于均值等级的性能进行比较。实证研究还表明,QQ图的测试比PP图的测试具有更好的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号