首页> 外文期刊>Communications in Statistics >Spatially Clustered Outbreak Detection Using the EWMA SCAN Statistics with Multiple Sized Windows
【24h】

Spatially Clustered Outbreak Detection Using the EWMA SCAN Statistics with Multiple Sized Windows

机译:使用EWMA SCAN统计信息和多个尺寸窗口进行空间聚类爆发检测

获取原文
获取原文并翻译 | 示例

摘要

Spatio-temporal surveillance methods for detecting outbreaks of disease are fairly common in the literature with the SCAN statistic setting the benchmark. If the shape and size of the outbreaks are known in advance, then the SCAN statistic can be trained to efficiently detect these, however this is seldom true. Therefore, we want to devise plans that are efficient at detecting a number of outbreaks that vary in size and shape. This article examines plans which use the exponential weighted moving average statistic to build temporal memory into plans and tries to develop robust plans for detecting outbreaks of unknown shapes and sizes.
机译:在文献中以SCAN统计为基准,用于检测疾病暴发的时空监视方法相当普遍。如果事先知道爆发的形状和大小,则可以训练SCAN统计信息以有效地检测出这些,但是很少如此。因此,我们希望设计出能够有效检测出大小和形状各异的疫情的计划。本文研究了使用指数加权移动平均统计量将时间记忆构建到计划中的计划,并尝试开发健壮的计划以检测未知形状和大小的爆发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号