首页> 外文期刊>Communications in Statistics >Two-Step Hypothesis Testing When the Number of Variables Exceeds the Sample Size
【24h】

Two-Step Hypothesis Testing When the Number of Variables Exceeds the Sample Size

机译:变量数量超过样本大小时的两步假设检验

获取原文
获取原文并翻译 | 示例

摘要

Medical images and genetic assays typically generate data with more variables than subjects. Scientists may use a two-step approach for testing hypotheses about Gaussian mean vectors. In the first step, principal components analysis (PCA) selects a set of sample components fewer in number than the sample size. In the second step, applying classical multivariate analysis of variance (MANOVA) methods to the reduced set of variables provides the desired hypothesis tests. Simulation results presented here indicate that success of the PCA in the first step requires nearly all variation to occur in population components far fewer in number than the number of subjects. In the second step, multivariate tests fail to attain reasonable power except in restrictive, favorable cases. The results encourage using other approaches discussed in the article to provide dependable hypothesis testing with high dimension, low sample size data (HDLSS).
机译:医学图像和遗传分析通常会产生比受试者更多变量的数据。科学家可以使用两步法来检验关于高斯均值向量的假设。第一步,主成分分析(PCA)选择数量少于样本数量的一组样本成分。第二步,将经典的多元方差分析(MANOVA)方法应用于简化的变量集,即可提供所需的假设检验。此处提供的模拟结果表明,第一步成功要实现PCA,几乎所有变化都需要在人口组成中发生,而数量远远少于受试者的数量。第二步,除非在限制性的,有利的情况下,多元测试无法获得合理的功效。结果鼓励使用本文中讨论的其他方法来为高维,低样本量数据(HDLSS)提供可靠的假设检验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号