首页> 外文期刊>Communications in Statistics >On Censored Bivariate Random Variables: Copula, Characterization, and Estimation
【24h】

On Censored Bivariate Random Variables: Copula, Characterization, and Estimation

机译:关于删失的二元随机变量:Copula,特征和估计

获取原文
获取原文并翻译 | 示例

摘要

Let (X, Y) be a bivariate random vector with joint distribution function F_(X,Y)(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (X_i, Y_i), i = 1, 2,..., n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (X_i, Y_i) for which X_i ≤ Y_i. We denote such pairs as (X_i~*, Y_i~*), i = 1, 2,..., v, where v is a random variable. The main problem of interest is to express the distribution function F_(X,Y)(x, y) and marginal distributions F and G with the distribution function of observed random variables X~* and Y~*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X~* and Y~*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X~* and Y~* and the stress-strength reliability P{X ≤ Y}. This allows also to estimate P{X ≤ Y) with the truncated observations (X_i~*, Y_i~*). The copula of bivariate random vector (X~*, Y~*) is also derived.
机译:令(X,Y)为具有联合分布函数F_(X,Y)(x,y)= C(F(x),G(y))的双变量随机向量,其中C为系,F和G为X和Y的边际分布。假设(X_i,Y_i),i = 1,2,...,n是来自(X,Y)的随机样本,但我们只能观察到由X_i组成的那些对(X_i,Y_i)组成的数据≤Y_i。我们将这样的对表示为(X_i〜*,Y_i〜*),i = 1,2,...,v,其中v是随机变量。感兴趣的主要问题是用观察到的随机变量X〜*和Y〜*的分布函数来表示分布函数F_(X,Y)(x,y)和边际分布F和G。结果表明,如果X和Y可与边际分布函数F交换,则F可由X〜*和Y〜*的分布唯一确定。还表明,如果X和Y独立且绝对连续,则F和G可以通过X〜*和Y〜*的分布函数以及应力强度可靠性P {X≤Y}来表示。这也允许利用截断的观测值(X_i〜*,Y_i〜*)估计P {X≤Y)。还推导了二元随机向量(X〜*,Y〜*)的系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号