首页> 外文期刊>Communications in Statistics >Finite Mixture of Generalized Semiparametric Models: Variable Selection via Penalized Estimation
【24h】

Finite Mixture of Generalized Semiparametric Models: Variable Selection via Penalized Estimation

机译:广义半参数模型的有限混合:通过惩罚估计的变量选择

获取原文
获取原文并翻译 | 示例

摘要

Selection of the important variables is one of the most important model selection problems in statistical applications. In this article, we address variable selection in finite mixture of generalized semiparametric models. To overcome computational burden, we introduce a class of variable selection procedures for finite mixture of generalized semiparametric models using penalized approach for variable selection. Estimation of nonparametric component will be done via multivariate kernel regression. It is shown that the new method is consistent for variable selection and the performance of proposed method will be assessed via simulation.
机译:重要变量的选择是统计应用中最重要的模型选择问题之一。在本文中,我们解决了广义半参数模型的有限混合中的变量选择。为了克服计算负担,我们针对惩罚性变量选择方法引入了一类针对广义半参数模型的有限混合的变量选择过程。非参数分量的估计将通过多元核回归完成。结果表明,新方法在变量选择上是一致的,所提方法的性能将通过仿真进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号