首页> 外文期刊>Communications in Statistics >A Robust Variable Selection to t-type Joint Generalized Linear Models via Penalized t-type Pseudo-likelihood
【24h】

A Robust Variable Selection to t-type Joint Generalized Linear Models via Penalized t-type Pseudo-likelihood

机译:惩罚t型伪似然对t型联合广义线性模型的鲁棒变量选择

获取原文
获取原文并翻译 | 示例

摘要

Although the t-type estimator is a kind of M-estimator with scale optimization, it has some advantages over the M-estimator. In this article, we first propose a t-type joint generalized linear model as a robust extension to the classical joint generalized linear models for modeling data containing extreme or outlying observations. Next, we develop a t-type pseudo-likelihood (TPL) approach, which can be viewed as a robust version to the existing pseudo-likelihood (PL) approach. To determine which variables significantly affect the variance of the response variable, we then propose a unified penalized maximum TPL method to simultaneously select significant variables for the mean and dispersion models in t-type joint generalized linear models. Thus, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the mean and dispersion models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies are conducted to illustrate the proposed methods.
机译:尽管t型估计器是一种经过比例优化的M估计器,但它比M估计器具有一些优势。在本文中,我们首先提出t型联合广义线性模型,作为对经典联合广义线性模型进行建模的可靠扩展,以对包含极端观测值或异常观测值的数据进行建模。接下来,我们开发一种t型伪可能性(TPL)方法,可以将其视为现有伪可能性(PL)方法的可靠版本。为了确定哪些变量会显着影响响应变量的方差,我们然后提出一种统一的惩罚最大TPL方法,以便同时为t型联合广义线性模型的均值模型和离散模型选择显着变量。因此,所提出的变量选择方法可以在均值和离散模型中同时执行参数估计和变量选择。通过适当选择调整参数,我们建立了正则估计量的一致性和oracle属性。进行仿真研究以说明所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号