首页> 外文期刊>Communications in Statistics >Multiple Imputation of Predictor Variables Using Generalized Additive Models
【24h】

Multiple Imputation of Predictor Variables Using Generalized Additive Models

机译:广义可加模型对预测变量的多重插补

获取原文
获取原文并翻译 | 示例

摘要

The sensitivity of multiple imputation methods to deviations from their distributional assumptions is investigated using simulations, where the parameters of scientific interest are the coefficients of a linear regression model, and values in predictor variables are missing at random. The performance of a newly proposed imputation method based on generalized additive models for location, scale, and shape (GAMLSS) is investigated. Although imputation methods based on predictive mean matching are virtually unbiased, they suffer from mild to moderate under-coverage, even in the experiment where all variables are jointly normal distributed. The GAMLSS method features better coverage than currently available methods.
机译:使用模拟研究了多种插补方法对偏离其分布假设的敏感性,其中具有科学价值的参数是线性回归模型的系数,而预测变量的值随机缺失。研究了基于位置,比例和形状(GAMLSS)的广义加性模型的新提议插补方法的性能。尽管基于预测均值匹配的插补方法实际上是无偏见的,但即使在所有变量都呈正态分布的实验中,它们也存在轻度到中度覆盖不足的问题。与目前可用的方法相比,GAMLSS方法具有更好的覆盖范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号