首页> 外文期刊>Communications in Statistics >Bayesian Estimation of the Log-linear Exponential Regression Model with Censorship and Collinearity
【24h】

Bayesian Estimation of the Log-linear Exponential Regression Model with Censorship and Collinearity

机译:具有审查和共线性的对数线性指数回归模型的贝叶斯估计

获取原文
获取原文并翻译 | 示例

摘要

In this work, a simulation study is conducted to evaluate the performance of Bayesian estimators for the log-linear exponential regression model under different levels of censoring and degrees of collinearity for two covariates. The diffuse normal, independent Student-t and multivariate Student-t distributions are considered as prior distributions and to draw from the posterior distributions, the Metropolis algorithm is implemented. Also, the results are compared with the maximum likelihood estimators in terms of the mean squared error, coverages and length of the credibility and confidence intervals.
机译:在这项工作中,进行了一项仿真研究,以评估在两个协变量的不同审查水平和共线性度下,对数线性指数回归模型的贝叶斯估计量的性能。扩散正态分布,独立Student-t和多元Student-t分布被视为先验分布,并从后验分布中提取出Metropolis算法。同样,将结果与均方误差,可信度的覆盖范围和长度以及置信区间进行比较,并与最大似然估计值进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号