首页> 外文期刊>Communications in Statistics >Improved Measures of the Spread of Data for Some Unknown Complex Distributions Using Saddlepoint Approximations
【24h】

Improved Measures of the Spread of Data for Some Unknown Complex Distributions Using Saddlepoint Approximations

机译:使用鞍点逼近的一些未知复杂分布的数据传播改进措施

获取原文
获取原文并翻译 | 示例

摘要

Measures of the spread of data for random sums arise frequently in many problems and have a wide range of applications in real life, such as in the insurance field (e.g., the total claim size in a portfolio). The exact distribution of random sums is extremely difficult to determine, and normal approximation usually performs very badly for this complex distributions. A better method of approximating a random-sum distribution involves the use of saddlepoint approximations.Saddlepoint approximations are powerful tools for providing accurate expressions for distribution functions that are not known in closed form. This method not only yields an accurate approximation near the center of the distribution but also controls the relative error in the far tail of the distribution.In this article, we discuss approximations to the unknown complex random-sum Poisson-Erlang random variable, which has a continuous distribution, and the random-sum Poisson-negative binomial random variable, which has a discrete distribution. We show that the saddlepoint approximation method is not only quick, dependable, stable, and accurate enough for general statistical inference but is also applicable without deep knowledge of probability theory. Numerical examples of application of the saddlepoint approximation method to continuous and discrete random-sum Poisson distributions are presented.
机译:随机总和的数据散布度量经常出现在许多问题中,并且在现实生活中具有广泛的应用,例如在保险领域(例如,投资组合中的总索赔额)。随机和的确切分布非常难以确定,并且对于这种复杂的分布,正态逼近通常表现得很差。更好的逼近随机和分布的方法是使用鞍点逼近。鞍点逼近是强大的工具,可为封闭式未知的分布函数提供准确的表达式。该方法不仅可以在分布的中心附近产生精确的近似值,而且可以控制分布的远端的相对误差。在本文中,我们讨论了未知复数随机和Poisson-Erlang随机变量的近似值,该变量具有连续分布,以及具有离散分布的随机和Poisson负二项式随机变量。我们表明,鞍点逼近方法不仅足够快速,可靠,稳定和准确,足以进行一般的统计推论,而且在没有深入的概率论知识的情况下也适用。给出了将鞍点近似方法应用于连续和离散随机和泊松分布的数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号