首页> 外文期刊>Communications in Statistics >Approximation Multivariate Distribution with Pair Copula Using the Orthonormal Polynomial and Legendre Multiwavelets Basis Functions
【24h】

Approximation Multivariate Distribution with Pair Copula Using the Orthonormal Polynomial and Legendre Multiwavelets Basis Functions

机译:使用正交多项式和Legendre多小波基函数的成对Copula逼近多元分布

获取原文
获取原文并翻译 | 示例

摘要

We concentrate on constructing higher dimensional distributions using a fast growing graphical model called Vine/ pair-copula model which has been introduced and developed by Joe, Cooke, Bedford, Kurowica, Daneshkhah, and others. They first construct a n-dimensional copula density by stacking together n(n - 1)/2 bivariate copula density, and they then approximate arbitrarily well these bivariate copulas and the corresponding multivariate distribution using a semi-parametric method. One constructive approach involves the use of minimum information copulas that can be specified to any required degree of precision based on the available data (or possibly based on the experts' judgments). By using this method, one is able to use a fixed finite dimensional family of copulas to be employed in terms of a vine construction, with the promise of a uniform level of approximation.The basic idea behind this method is to use a two-dimensional ordinary polynomial series to approximate any log-density of a bivariate copula function by truncating the series at an appropriate point. We make this approximation method more accurate and computationally faster by using the orthonormal polynomial and Legendre multiwavelets (LMW) series as the basis functions. We show the derived approximations are more precise and computationally faster with better properties than the one proposed previous method in the literature. We then apply our method to modeling a dataset of Norwegian financial data that was previously analyzed in the series of articles, and finally compare our results by them. At the end, we present a method to simulate from the approximated models, and validate our approximation using the simulation results to recover the same dependency structure of the original data.
机译:我们专注于使用称为Vine / pair-copula模型的快速增长的图形模型构造更高的尺寸分布,该模型已由Joe,Cooke,Bedford,Kurowica,Daneshkhah等人引入和开发。他们首先通过将n(n-1)/ 2个双变量copula密度堆叠在一起来构建n维copula密度,然后他们使用半参数方法任意近似地近似了这些双变量copula和相应的多元分布。一种建设性的方法涉及使用最小信息关联,可以根据可用数据(或可能基于专家的判断)将其指定为任何所需的精确度。通过使用这种方法,人们可以使用固定的有限维系系的葡萄树,以确保葡萄树的构造具有统一的近似水平。该方法背后的基本思想是使用二维普通多项式级数,可以通过在适当的位置截断该级数来近似双变量copula函数的任何对数密度。通过使用正交多项式和勒让德多小波(LMW)级数作为基函数,可以使这种近似方法更准确,计算速度更快。我们显示,与文献中先前提出的一种方法相比,得出的近似值更精确,计算速度更快,并且具有更好的属性。然后,我们将我们的方法应用于先前在系列文章中进行过分析的挪威财务数据的数据集建模,最后通过它们对我们的结果进行比较。最后,我们提出了一种从近似模型进行仿真的方法,并使用仿真结果验证了我们的近似值,以恢复原始数据的相同依存结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号