首页> 外文期刊>Communications in Statistics >Parametric bootstrap inferences for unbalanced panel data models
【24h】

Parametric bootstrap inferences for unbalanced panel data models

机译:不平衡面板数据模型的参数引导程序推断

获取原文
获取原文并翻译 | 示例

摘要

This article presents parametric bootstrap (PB) approaches for hypothesis testing and interval estimation for the regression coefficients of panel data regression models with incomplete panels. Some simulation results are presented to compare the performance of the PB approaches with the approximate inferences. Our studies show that the PB approaches perform satisfactorily for various sample sizes and parameter configurations, and the performance of PB approaches is mostly better than the approximate methods with respect to the coverage probabilities and the Type I error rates. The PB inferences have almost exact coverage probabilities and Type I error rates. Furthermore, the PB procedure can be simply carried out by a few simulation steps, and the derivation is easier to understand and to be extended to the multi-way error component regression models with unbalanced panels. Finally, the proposed approaches are illustrated by using a real data example.
机译:本文介绍了用于不完整面板的面板数据回归模型的回归系数的假设检验和区间估计的参数引导程序(PB)方法。提出了一些仿真结果,以将PB方法的性能与近似推断进行比较。我们的研究表明,对于各种样本量和参数配置,PB方法的性能令人满意,并且在覆盖率和I型错误率方面,PB方法的性能大多优于近似方法。 PB推论具有几乎准确的覆盖率和I型错误率。此外,PB过程可以通过几个模拟步骤简单地执行,并且推导更容易理解,并且可以扩展到具有不平衡面板的多向误差分量回归模型。最后,通过一个真实的数据示例来说明所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号