首页> 外文期刊>Communications in Statistics >Testing a linear ARMA model against threshold-ARMA models: A Bayesian approach
【24h】

Testing a linear ARMA model against threshold-ARMA models: A Bayesian approach

机译:针对阈值-ARMA模型测试线性ARMA模型:贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

We introduce a Bayesian approach to test linear autoregressive moving-average (ARMA) models against threshold autoregressive moving-average (TARMA) models. First, the marginal posterior densities of all parameters, including the threshold and delay, of a TARMA model are obtained by using Gibbs sampler with Metropolis-Hastings algorithm. Second, reversible-jump Markov chain Monte Carlo (RJMCMC) method is adopted to calculate the posterior probabilities for ARMA and TARMA models: Posterior evidence in favor of TARMA models indicates threshold nonlinearity. Finally, based on RJMCMC scheme and Akaike information criterion (AIC) or Bayesian information criterion (BIC), the procedure for modeling TARMA models is exploited. Simulation experiments and a real data example show that our method works well for distinguishing an ARMA from a TARMA model and for building TARMA models.
机译:我们引入了贝叶斯方法来针对阈值自回归移动平均(TARMA)模型测试线性自回归移动平均(ARMA)模型。首先,使用具有Metropolis-Hastings算法的Gibbs采样器,获得TARMA模型的所有参数(包括阈值和延迟)的边缘后验密度。其次,采用可逆跳跃马尔可夫链蒙特卡罗(RJMCMC)方法来计算ARMA和TARMA模型的后验概率:支持TARMA模型的后验证据表明阈值非线性。最后,基于RJMCMC方案和Akaike信息准则(AIC)或贝叶斯信息准则(BIC),开发了TARMA模型的建模过程。仿真实验和一个真实的数据示例表明,我们的方法可以很好地将ARMA与TARMA模型区分开,并用于构建TARMA模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号