首页> 外文期刊>Communications in Statistics >Comparing different propensity score estimation methods for estimating the marginal causal effect through standardization to propensity scores
【24h】

Comparing different propensity score estimation methods for estimating the marginal causal effect through standardization to propensity scores

机译:比较不同的倾向得分估计方法,以通过标准化倾向得分来估计边际因果效应

获取原文
获取原文并翻译 | 示例

摘要

Hernan and Robins proposed a method for calculating marginal causal effect of treatment using standardization to propensity scores.Data adaptive methods have been suggested as alternatives to logistic regression for the estimation of propensity scores. We examined the performance of various data mining methods using simulated data. The estimators' performance was evaluated in terms of relative bias, 95% CI coverage rate, and mean squared error.All methods (except CART and GBM) displayed generally acceptable performance. However, under the conditions of moderate non-additivity and moderate nonlinearity, ANN and SL outperformed logistic regression with better bias reduction and more consistent 95% CI coverage.
机译:Hernan和Robins提出了一种使用标准化的倾向得分来计算治疗的边际因果效应的方法。有人提出了数据自适应方法作为Logistic回归估计倾向得分的替代方法。我们使用模拟数据检查了各种数据挖掘方法的性能。根据相对偏差,95%CI覆盖率和均方误差评估了评估器的性能。所有方法(CART和GBM除外)均表现出可接受的性能。但是,在中等非可加性和中等非线性的条件下,ANN和SL的logistic回归性能优于Logistic回归,具有更好的偏差降低和更一致的95%CI覆盖率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号