首页> 外文期刊>Communications in Statistics >The performance of univariate goodness-of-fit tests for normality based on the empirical characteristic function in large samples
【24h】

The performance of univariate goodness-of-fit tests for normality based on the empirical characteristic function in large samples

机译:基于经验特征函数的大样本正态拟合拟合检验的性能

获取原文
获取原文并翻译 | 示例

摘要

A test based on the studentized empirical characteristic function calculated in a single point is derived. An empirical power comparison is made between this test and tests like the Epps-Pulley, Shapiro-Wilks, Anderson-Darling and other tests for normality. It is shown to outperform the more complicated Epps-Pulley test based on the empirical characteristic function and a Cramer-von Mises type expression in a simulation study. The test performs especially good in large samples and the derived test statistic has an asymptotic normal distribution which is easy to apply.
机译:得出基于单点计算的学生化经验特征函数的检验。在该测试与Epps-Pulley,Shapiro-Wilks,Anderson-Darling等测试和其他正常性测试之间进行了经验功效比较。在模拟研究中,基于经验特征函数和Cramer-von Mises类型表达式,它的性能优于更复杂的Epps-Pulley检验。该测试在大样本中表现尤其出色,并且导出的测试统计量具有易于应用的渐近正态分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号