首页> 外文期刊>Communications in Statistics >Optimal inference for Simon's two-stage design with over or under enrollment at the second stage
【24h】

Optimal inference for Simon's two-stage design with over or under enrollment at the second stage

机译:在第二阶段录取人数过多或不足的情况下,对Simon两阶段设计的最佳推断

获取原文
获取原文并翻译 | 示例

摘要

Simon's two-stage designs are widely used in clinical trials to assess the activity of a new treatment. In practice, it is often the case that the second stage sample size is different from the planned one. For this reason, the critical value for the second stage is no longer valid for statistical inference. Existing approaches for making statistical inference are either based on asymptotic methods or not optimal. We propose an approach to maximize the power of a study while maintaining the type I error rate, where the type I error rate and power are calculated exactly from binomial distributions. The critical values of the proposed approach are numerically searched by an intelligent algorithm over the complete parameter space. It is guaranteed that the proposed approach is at least as powerful as the conditional power approach which is a valid but non-optimal approach. The power gain of the proposed approach can be substantial as compared to the conditional power approach. We apply the proposed approach to a real Phase II clinical trial.
机译:西蒙的两阶段设计被广泛用于临床试验,以评估新疗法的活性。实际上,第二阶段的样本数量通常与计划的样本数量不同。因此,第二阶段的临界值对于统计推断不再有效。用于进行统计推断的现有方法要么基于渐近方法,要么不是最优方法。我们提出一种在保持I型错误率的同时最大化研究功效的方法,其中I型错误率和功效是根据二项式分布精确计算的。通过智能算法在整个参数空间上对提出的方法的临界值进行数值搜索。可以保证所提出的方法至少与有条件的功率方法一样有效,后者是有效但非最优的方法。与条件功率方法相比,所提出方法的功率增益可以是可观的。我们将建议的方法应用于实际的II期临床试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号