首页> 外文期刊>International journal for numerical methods in biomedical engineering >Meshfree analysis of two-dimensional contaminant transport through unsaturated porous media using EFGM
【24h】

Meshfree analysis of two-dimensional contaminant transport through unsaturated porous media using EFGM

机译:使用EFGM进行二维污染物通过不饱和多孔介质的无网格分析

获取原文
获取原文并翻译 | 示例

摘要

The development of numerical methods for modelling contaminant transport in the subsurface is of major importance in view of the numerous applications in the contaminant hydrogeology and geoenvi-ronmental engineering. Conventional mesh-based numerical methods have some difficulties when dealing with contaminant transport problems wherein high advective velocities, low dispersivities and/or high contrast in dispersivity are involved. The present study aims at contributing to the numerical study of two-dimensional contaminant transport thorough unsaturated porous media using meshfree technique, namely element-free Galerkin method (EFGM). In the EFGM, an approximate solution is constructed entirely in terms of a set of nodes and no characterization of the interrelationship of the nodes is needed. The EFGM employs moving least squares approximants to approximate the function and uses the Lagrange multiplier method for imposing the essential boundary conditions, van Genuchten model is used for describing the hydrodynamic properties of the unsaturated porous media. MATLAB code is developed to obtain the numerical solution. Three numerical examples are presented and the results are compared with those obtained from the finite element method. The EFGM has generated stable and convergent results for advection-dominated transport problems.
机译:鉴于在污染物水文地质学和地质环境工程中的大量应用,开发用于模拟地下污染物运输的数值方法非常重要。常规的基于网格的数值方法在处理污染物迁移问题时会遇到一些困难,其中涉及高对流速度,低分散度和/或高分散度对比度。本研究旨在为利用无网格技术(即无元素伽勒金方法(EFGM))对不饱和多孔介质进行二维污染物传输的数值研究做出贡献。在EFGM中,完全根据一组节点构造一个近似解,不需要表征节点之间的相互关系。 EFGM采用移动最小二乘近似来逼近函数,并使用Lagrange乘子法施加基本边界条件,使用van Genuchten模型描述非饱和多孔介质的流体动力学特性。开发了MATLAB代码以获得数值解。给出了三个数值示例,并将结果与​​有限元方法的结果进行了比较。对于以平流为主的运输问题,EFGM已经产生了稳定且收敛的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号