首页> 外文期刊>International journal for numerical methods in biomedical engineering >Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines
【24h】

Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines

机译:使用基于多模式组织的特征选择和支持向量机进行有效的脑部病变分割

获取原文
获取原文并翻译 | 示例

摘要

Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54 ± 0.12,0.72 ± 0.06 and 0.82 ± 0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just Tl-w and FLAIR sequences (Dice scores of 0.52 ± 0.13,0.71 ± 0.08 and 0.81 ± 0.07). Furthermore, there was a negligible difference between using 5×5×5 and 3×3×3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing.
机译:支持向量机(SVM)是机器学习技术,已用于医学图像的分割和分类,包括白质超强度(WMH)的分割。使用SVM进行WMH分割的当前方法是从大脑中提取特征并将其分类,然后进行复杂的后处理步骤以消除误报。本文提出的方法结合了先进的预处理,基于组织的特征选择和SVM分类来获得有效而准确的WMH分割。比较了来自125位患者的特征,这些特征来自多达四种MR模式[T1-w,T2-w,质子密度和液体衰减反转恢复(FLAIR)],不同的邻域大小和多尺度特征的使用。我们发现,尽管使用全部四种方式给出了最佳的总体分类(小,中,重度病变负荷的平均Dice评分分别为0.54±0.12、0.72±0.06和0.82±0.06);与仅使用T1-w和FLAIR序列(骰子得分为0.52±0.13、0.71±0.08和0.81±0.07)相比,这没有显着差异(p = 0.50)。此外,使用5×5×5和3×3×3特征之间的差异可以忽略不计(p = 0.93)。最后,我们表明对功能和预处理技术的仔细考虑不仅节省了存储空间和计算时间,而且还导致了更有效的分类,其性能优于基于所有功能的后处理。

著录项

  • 来源
  • 作者单位

    CEREMADE, UMR 7534 CNRS Universite Paris Dauphine, France CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, Qld, Australia Centre De Recherche en Mathematiques de la Decision, Universite Paris DauphinePlace du Marechal De Lattre De Tassigny 75775 PARIS CEDEX 16, FRANCE;

    CEREMADE, UMR 7534 CNRS Universite Paris Dauphine, France;

    CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, Qld, Australia;

    CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, Qld, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    image processing; brain lesion; segmentation; classification; support vector machines;

    机译:图像处理;脑部病变分割;分类;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号