首页> 外文期刊>Communications in Numerical Methods in Engineering >A Quasi‐3D compartmental multi‐scale approach to detect and quantify diseased regional lung constriction using spirometry data
【24h】

A Quasi‐3D compartmental multi‐scale approach to detect and quantify diseased regional lung constriction using spirometry data

机译:使用肺活量测定数据的Quasi-3D隔室多尺度方法来检测和量化患病区域性肺收缩

获取原文
获取原文并翻译 | 示例

摘要

Spirometry is a widely used pulmonary function test to detect the airflow limitations associated with various obstructive lung diseases, such as asthma, chronic obstructive pulmonary disease, and even obesity-related complications. These conditions arise due to the change in the airway resistance, alveolar compliance, and inductance values. Currently, zero-dimensional compartmental models are commonly used for calibrating these resistance, compliance, and inductance values, ie, solving the inverse spirometry problem. However, zero-dimensional compartments cannot capture the flow physics or the spatial geometry effects, thereby generating a low fidelity prediction of the diseased lung. Computational fluid dynamics (CFD) models offer higher fidelity solutions but may be impractical for certain applications due to the duration of these simulations. Recently, a novel, fast-running, and robust Quasi-3D (Q3D) wire model for simulating the airflow in the human lung airway was developed by CFD Research Corporation. This Q3D method preserved the 3D spatial nature of the airways and was favorably validated against CFD solutions. In the present study, the Q3D compartmental multi-scale combination is further improved to predict regional lung constriction of diseased lungs using spirometry data. The Q3D mesh is resolved up to the eighth lung airway generation. The remainder of the airways and the alveoli sections are modeled using a compartmental approach. The Q3D geometry is then split into different spatial sections, and the resistance values in these regions are obtained using parameter inversion. Finally, the airway diameter values are then reduced to create the actual diseased lung model, corresponding to these resistance values. This diseased lung model can be used for patient-specific drug deposition predictions and the subsequent optimization of the orally inhaled drug products.
机译:肺活量测定法是一种广泛使用的肺功能测试,用于检测与各种阻塞性肺部疾病(例如哮喘,慢性阻塞性肺部疾病,甚至与肥胖相关的并发症)相关的气流受限。这些情况的出现是由于气道阻力,肺泡顺应性和电感值的变化。当前,零维隔室模型通常用于校准这些电阻,顺应性和电感值,即解决反肺活量测定法问题。但是,零维隔室无法捕获流动物理学或空间几何效应,从而生成患病肺部的低保真度预测。计算流体动力学(CFD)模型提供了更高的保真度解决方案,但由于这些仿真的持续时间,因此对于某些应用可能不切实际。最近,CFD研究公司开发了一种新颖,运行快速且可靠的Quasi-3D(Q3D)线模型,用于模拟人肺气道中的气流。这种Q3D方法保留了气道的3D空间特性,并针对CFD解决方案进行了验证。在本研究中,使用肺活量测定数据进一步改善了Q3D隔室多尺度组合以预测患病肺的局部肺收缩。 Q3D网格一直解析到第八代肺气道。使用隔室方法对其余的气道和肺泡部分进行建模。然后将Q3D几何体划分为不同的空间部分,并使用参数求反获得这些区域中的电阻值。最后,然后减小气道直径值,以创建对应于这些阻力值的实际患病肺模型。这种患病的肺模型可用于患者特定的药物沉积预测以及口服吸入药物产品的后续优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号