首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Accelerating numerical simulation of continuous-time Boolean satisfiability solver using discrete gradient
【24h】

Accelerating numerical simulation of continuous-time Boolean satisfiability solver using discrete gradient

机译:使用离散梯度加速连续布尔满足性求解器的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

To explore the design of analog computing devices, modeling the problem-solving process as a continuous-time dynamical system is important. Ercsey-Ravasz and Toroczkai [Nature Physics 7, 966 (2011)] proposed such a model for solving the Boolean satisfiability (SAT) problem. This system consists of a gradient system that minimizes the potential function reduced from the SAT problem and a system for achieving a temporal variation of the po-tential function to avoid the problem of non-solution local minima. Although the ability of the system to find a solution to the SAT problem is demonstrated, its large simulation cost hinders theoretical research towards the physical realization and limits its utility on digital computers. This is due to the necessity of small time steps to maintain the numerical sta-bility of the simulation. In this study, we propose a fast and stable numerical simulation algorithm for this solver using the discrete gradient method to allow a larger time step. We also propose an adaptive time step control method for this system. The proposed algo-rithm achieves a faster simulation by a factor of approximately 100, compared to conven-tional methods. Although taking a large time step degrades the accuracy, we found that it does not necessarily degrade the performance as a SAT solver; this indicates the new util-ity of the discrete gradient apart from the conventional studies of numerical simulation algorithms that pursue accuracy as well as efficiency. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
机译:为了探讨模拟计算设备的设计,将解决问题解决过程的设计为连续时间动态系统很重要。 ercsey-ravasz和toroczkai [Nature Physics 7,966(2011)]提出了解决布尔满足性(SAT)问题的模型。该系统由梯度系统组成,该梯度系统最小化从SAT问题减少的潜在功能,以及用于实现Po-rential功能的时间变化以避免非解决方案局部最小值的问题。虽然系统能够找到解决SAT问题的解决方案,但其大型仿真成本阻碍了对物理实现的理论研究,并限制了其在数字计算机上的效用。这是由于需要少的时间步骤来维持模拟的数值STA合体。在这项研究中,我们向该求解器提出了一种快速稳定的数值模拟算法,使用离散梯度方法来允许较大的时间步长。我们还提出了一种用于该系统的自适应时间步长控制方法。与共同方法相比,所提出的算法达到了大约100的模拟。虽然花了很大的时间步骤降低了准确性,但我们发现它不一定会降低作为SAT求解器的性能;这表明离散梯度的新员ITY除了追求准确性和效率的数值模拟算法的传统研究。 (c)2021作者。由elsevier b.v发布。这是CC下的开放式访问文章(http://creativecommons.org/licenses/by/4.0/)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号