首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Introducing phase jump tracking - a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem
【24h】

Introducing phase jump tracking - a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem

机译:介绍阶段跳闸跟踪 - 一种快速Zakharov-Shabat问题的特征值评价

获取原文
获取原文并翻译 | 示例

摘要

We propose a new method for finding discrete eigenvalues for the direct Zakharov-Shabat problem, based on moving in the complex plane along the argument jumps of the function a(zeta ), the localization of which does not require great accuracy. It allows to find all discrete eigenvalues taking into account their multiplicity faster than matrix methods and contour integrals. The method shows significant advantage over other methods when calculating a large discrete spectrum, both in speed and accuracy. (C) 2021 Elsevier B.V. All rights reserved.
机译:我们提出了一种新方法,用于寻找直接Zakharov-Shabat问题的离散特征值,基于沿着函数A(Zeta)的参数跳转,其本地化不需要极高的精度。它允许查找所有离散的特征值,以考虑到它们的多个比矩阵方法和轮廓积分更快。当计算大离散频谱时,该方法显示出速度和精度的其他方法。 (c)2021 Elsevier B.V.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号