首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Bounded solution structure of Schrodinger equation in the presence of the minimal length and its effect: Bound states in the continuum are universal
【24h】

Bounded solution structure of Schrodinger equation in the presence of the minimal length and its effect: Bound states in the continuum are universal

机译:Schrodinger方程在存在最小长度及其效果中的有界解决方案:连续内的绑定状态是普遍的

获取原文
获取原文并翻译 | 示例

摘要

Bound states in the continuum (BICs) are generally considered unusual phenomena. In this work, first, we provide a method to analyze the spatial structure of particle's bound states in the presence of a minimal length, which can be used to find BICs; second, we provide a method to analyze the singular perturbation term's effect of the Schrodinger equation, which can determine whether the BICs are readily observed in systems. Using the first method, we find that a counterintuitive phenomenon: the BICs are universal phenomena under the effect of the minimal length. Several examples of typical linear and nonlinear potentials, i.e., the infinite potential well, linear potential, harmonic oscillator, Poschl-Teller potential, quantum bouncer, half oscillator, quantum bouncer in a closed court, harmonic oscillator plus Dirac delta function and Coulomb potential, are provided to show the BICs are universal. The wave functions and energy of the first three examples are provided. Using the second method, we find the reason for this phenomenon: although the BICs are universal phenomena, they are often hardly found in many ordinary environments since the bound continuous states perturbed by the effect of the minimal length are too weak to observe. Three examples are discussed. And we provide the range of the deforming parameter beta of the minimal length that can make the BICs be readily observed. The results are consistent with the current experimental results on BICs. In addition, we reveal a mechanism of the BICs. The mechanism explains why current research shows the bound discrete states are typical, whereas BICs are always found in certain particular environments when the minimal length is not considered. (C) 2021 Elsevier B.V. All rights reserved.
机译:连续体(BICS)中的绑定状态通常被认为是不寻常的现象。在这项工作中,首先,我们提供了一种方法来分析粒子绑定状态的空间结构,在最小长度的存在下,可用于找到BICS;其次,我们提供了一种分析Schrodinger方程对奇异扰动项的效果的方法,这可以确定在系统中是否容易观察到BIC。使用第一种方法,我们发现违反直觉现象:BICS在最小长度的影响下是普遍现象。典型的线性和非线性电位的几个例子,即无限势阱,线性电位,谐振子,Poschl-exculter电位,Quantum Bouncer,半振荡器,Quantum Bouncer在封闭的宫廷,谐振子加上Dirac Delta功能和库仑势,提供以显示BIC是普遍的。提供了前三个示例的波形功能和能量。使用第二种方法,我们找到了这种现象的原因:虽然BICS是普遍的现象,但它们通常在许多普通环境中常见地发现,因为由于最小长度的效果扰动的束缚连续状态太弱而无法观察。讨论了三个例子。我们提供了最小长度的变形参数β的范围,其可以容易地观察到具有BIC的最小长度。结果与目前对BIC的实验结果一致。此外,我们揭示了BIC的机制。该机制解释了为什么当前的研究表明绑定的离散状态是典型的,而当不考虑最小长度时,在某些特定环境中始终找到BICS。 (c)2021 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号