首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Quality assessment of compressed and resized medical images based on pattern recognition using a convolutional neural network
【24h】

Quality assessment of compressed and resized medical images based on pattern recognition using a convolutional neural network

机译:基于模式识别使用卷积神经网络基于模式识分的压缩和大小医学图像的质量评估

获取原文
获取原文并翻译 | 示例

摘要

Given the explosive growth of the amount of medical image data being produced and transferred over networks every day, employing lossy compression and other irreversible image operations is inevitable. As expected, irreversible image coding may decrease image fidelity by introducing undesired artifacts, which may lead to an invalid diagnosis.The purpose of this study is to propose a no-reference model of assessing the quality of a degraded medical image resulting from irreversible coding, based on pattern recognition with the use of a convolutional neural network (CNN). This deep neural network consists of six convolutional layers followed by two fully connected ones for the final image classification. Such network geometry is a common choice for image classification problems nowadays. We aim to construct a model that is specialized for medical images and could serve as a predictor of image quality for algorithm performance analysis. This technique uses a CNN to classify shapes of randomly chosen grayscale intensities.The shapes and grayscale shadings were chosen with the intention to mimic structures and edges appearing in a medical image. Using the accuracy of a classifier, we attempt to quantitatively measure how the information content in an image deteriorates after applying irreversible operations and how this loss of information affects the ability/inability of the neural network to recognize the shapes. The technique may be used to study the performance of irreversible image coding techniques. Two irreversible operations are employed for image degradation: compression and interpolation. We show the difference of image quality resulting from JPEG and JPEG2000 compression algorithms followed by scaling using several interpolation techniques. The main result of this work is the development of a model to quantitatively measure image quality based on pattern recognition using a deep neural network. The presented model of quantitative assessment of medical image quality may be helpful in determining the thresholds for irreversible image post-processing algorithms parameters (i.e. quality factor in JPEG) in order to avoid misdiagnosis. Further investigation of this problem will involve a connection of the introduced method with specific pathologies and various medical image modalities. (C) 2020 Elsevier B.V. All rights reserved.
机译:鉴于每天生产和通过网络转移和转移的医学图像数据量的爆炸性增长,采用有损压缩和其他不可逆图像操作是不可避免的。正如预期的那样,不可逆图像编码可以通过引入不需要的伪像来降低图像保真度,这可能导致无效的诊断。本研究的目的是提出一种评估由不可逆编码产生的降级的医学图像的质量的无参考模型,基于使用卷积神经网络(CNN)的模式识别。这种深度神经网络由六个卷积层组成,然后是两个完全连接的层,用于最终图像分类。这种网络几何形状是现在图像分类问题的常见选择。我们的目标是构建专门用于医学图像的模型,并且可以作为算法性能分析的图像质量的预测因子。该技术使用CNN来分类随机所选择的灰度强度的形状。选择了形状和灰度遮光,以意图模拟了在医学图像中出现的结构和边缘。使用分类器的准确性,我们尝试在应用不可逆的操作之后定量地测量图像中的信息内容恶化以及这种信息丢失如何影响神经网络的能力/无法识别形状。该技术可用于研究不可逆图像编码技术的性能。用于图像劣化的两个不可逆操作:压缩和插值。我们展示了JPEG和JPEG2000压缩算法产生的图像质量的差异,然后使用多个插值技术进行缩放。这项工作的主要结果是基于使用深神经网络的模式识别来发展模型以定量测量图像质量。所呈现的医学图像质量的定量评估模型可能有助于确定不可逆图像后处理算法参数的阈值(即JPEG中的质量因子),以避免误诊。进一步调查该问题将涉及具有特定病理学和各种医学图像方式的引入方法的连接。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号