首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Intra- and intersegmental neural network architectures determining rhythmic motor activity in insect locomotion
【24h】

Intra- and intersegmental neural network architectures determining rhythmic motor activity in insect locomotion

机译:和中间的神经网络架构确定昆虫运动中的节奏电机活动

获取原文
获取原文并翻译 | 示例
           

摘要

The coordinated movement of the extremities of an animal during locomotion is achieved by the interaction between groups of neurons called central pattern generators (CPGs). In the absence of any sensory input this network creates a stable rhythmic motor activity that is essential for a successful coordination between limbs. Studying the structure and the interaction between different parts of the CPG network is therefore of particular interest.This work is motivated by recent experimental results reported by Mantziaris et al. (2017) By chemically activating both isolated and interconnected deafferented tho- racic segments (ganglia) of the stick insect Mantziaris et al. (2017) analyzed the in- teractions between contralateral networks that drive the levator-depressor muscle pairs, which are responsible for the upward-downward movement of the legs. The results of the experimental analysis showed that intrasegmental phase relations differ between isolated segments. In particular, in isolated segments where the control networks of the middle and hind legs reside, i.e. in the meso- and metathoracic ganglia, the phase relations between activities of the contralateral depressor motoneurons were in-phase and anti-phase, respectively. Moreover, the phase relations switched to in-phase and stabilized when the ganglia were interconnected.Using the phase reduction of an intersegmental network model of stick insect locomotion presented in our previous work (Yeldesbay et al. (2017) [22]), we built a reduced model of the intra- and intersegmental network controlling levator-depressor activity in the meso-and metathoracic ganglia. By examining the intra- and intersegmental phase differences in the model we identified the properties of the network couplings that replicate the results observed in the experiments. We applied the theoretical analysis to escape type CPGs and revealed a set of possible contra- and ipsilateral synaptic connections. Finally, we defined general features of the couplings between CPGs of any type that maintain the phase relations observed in the experiments. (C) 2019 Elsevier B.V. All rights reserved.
机译:通过称为中央图案发生器(CPGS)的神经元组之间的相互作用,实现了运动期间动物的四肢的协调运动。在没有任何感觉输入的情况下,该网络产生稳定的节奏电机活动,这对于肢体之间的成功协调至关重要。研究结构和CpG网络不同部分之间的相互作用特别感兴趣。本作作品是由Mantziaris等人报告的最近的实验结果的激励。 (2017)通过化学激活隔离和相互连接的Deafferented The-RaciC段(Ganglia)的棒昆虫·曼坦斯等人。 (2017)分析了驱动喇叭压迫肌对的对侧网络之间的替补,这负责腿的向上向下运动。实验分析的结果表明,局部相位关系在隔离区段之间不同。特别地,在中间和后腿的控制网络所在的隔离段中,即在中间和婚姻神经节中,对侧抑郁症运动神经元的活动之间的相位关系分别是同阶段的抗阶段。此外,当Ganglia相互连接时,相位关系切换到同阶段并稳定化。我们在我们之前的工作中提出的棒昆虫运动的三角形网络模型的相位减少(YeldesBay等人。(2017)[22]),我们建立了在中间和脱毛神经节中的内部网络控制中的内部网络和主体网络中的血管抑郁症活性的模型。通过检查模型中的内部相位差,我们确定了复制实验中观察到的结果的网络耦合的性质。我们将理论分析应用于逃脱型CPG,并揭示了一系列可能的对抗和同侧突触连接。最后,我们定义了在实验中观察到的相位关系的任何类型的CPG之间的耦合的一般特征。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号