首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Sparse eigenbasis approximation: Multiple feature extraction across spatiotemporal scales with application to coherent set identification
【24h】

Sparse eigenbasis approximation: Multiple feature extraction across spatiotemporal scales with application to coherent set identification

机译:稀疏的eigenbasis近似值:使用应用于相干集识别的时空尺度的多个特征提取

获取原文
获取原文并翻译 | 示例

摘要

The output of spectral clustering is a collection of eigenvalues and eigenvectors that encode important connectivity information about a graph or a manifold. This connectivity information is often not cleanly represented in the eigenvectors and must be disentangled by some secondary procedure. We propose the use of an approximate sparse basis for the space spanned by the leading eigenvectors as a natural, robust, and efficient means of performing this separation. The use of sparsity yields a natural cutoff in this disentanglement procedure and is particularly useful in practical situations when there is no clear eigengap. In order to select a suitable collection of vectors we develop a new Weyl-inspired eigengap heuristic and heuristics based on the sparse basis vectors. We develop an automated eigenvector separation procedure and illustrate its efficacy on examples from time-dependent dynamics on manifolds. In this context, transfer operator approaches are extensively used to find dynamically disconnected regions of phase space, known as almost-invariant sets or coherent sets. The dominant eigenvectors of transfer operators or related operators, such as the dynamic Laplacian, encode dynamic connectivity information. Our sparse eigenbasis approximation (SEBA) methodology streamlines the final stage of transfer operator methods, namely the extraction of almost-invariant or coherent sets from the eigenvectors. It is particularly useful when used on domains with large numbers of coherent sets, and when the coherent sets do not exhaust the phase space, such as in large geophysical datasets. (C) 2019 Published by Elsevier B.V.
机译:频谱聚类的输出是针对特征值和特征向量的集合,其编码关于图形或歧管的重要连接信息。该连接信息通常在特征向量中不得干净地表示,并且必须被一些次要过程解除。我们提出使用前导特征向量跨越的空间使用近似稀疏基础,作为进行这种分离的自然,鲁棒,有效的方法。稀疏性的使用产生了这种解剖学过程中的自然截止,并且在没有明确的EIGENGAP时在实际情况中特别有用。为了选择合适的矢量集合,我们开发了一种基于稀疏基础向量的新的Weyl-Insiregap启发式和启发式。我们开发自动化特征传感器分离程序,并说明其对歧管上的时间依赖动态的实例的功效。在此上下文中,传输操作员方法广泛用于查找相位空间的动态断开区域,称为几乎不变集或相干集。转移运营商或相关运营商的主导特征向量,如动态拉普拉斯,编码动态连接信息。我们稀疏的特征近似(SEBA)方法简化了转移操作方法的最终阶段,即从特征向量中提取几乎不变或相干套件。当在具有大量连贯组的域时使用时特别有用,并且当相干组不排出相位空间时,例如在大型地球物理数据集中。 (c)2019年由elestvier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号