首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >On the merits of sparse surrogates for global sensitivity analysis of multi-scale nonlinear problems: Application to turbulence and fire-spotting model in wildland fire simulators
【24h】

On the merits of sparse surrogates for global sensitivity analysis of multi-scale nonlinear problems: Application to turbulence and fire-spotting model in wildland fire simulators

机译:关于多规模非线性问题全局敏感性分析的稀疏替代品的优点:野外火灾模拟器湍流与灭火模型的应用

获取原文
获取原文并翻译 | 示例

摘要

Many nonlinear phenomena, whose numerical simulation is not straightforward, depend on a set of parameters in a way which is not easy to predict beforehand. Wildland fires in presence of strong winds fall into this category, also due to the occurrence of firespotting. We present a global sensitivity analysis of a new sub-model for turbulence and fire-spotting included in a wildfire spread model based on a stochastic representation of the fireline. To limit the number of model evaluations, fast surrogate models based on generalized Polynomial Chaos (gPC) and Gaussian Process are used to identify the key parameters affecting topology and size of burnt area. This study investigates the application of these surrogates to compute Sobol' sensitivity indices in an idealized test case. The performances of the surrogates for varying size and type of training sets as well as for varying parameterization and choice of algorithms have been compared. In particular, different types of truncation and projection strategies are tested for gPC surrogates. The best performance was achieved using a gPC strategy based on a sparse least-angle regression (LAR) and a low-discrepancy Halton's sequence. Still, the LAR-based gPC surrogate tends to filter out the information coming from parameters with large length-scale, which is not the case of the cleaning-based gPC surrogate. The wind is known to drive the fire propagation. The results show that it is a more general leading factor that governs the generation of secondary fires. Using a sparse surrogate is thus a promising strategy to analyze new models and its dependency on input parameters in wildfire applications. (C) 2019 Elsevier B.V. All rights reserved.
机译:许多非线性现象,其数值模拟并不简单,依赖于一组参数,以便预先预测不容易预测。荒地在强风中的火灾落入这一类别,也是由于闪光的发生。我们在野火扩频模型中介绍了一种全局敏感性分析,该湍流和野火展示中的灭火模型基于燃烧的随机表示。为了限制模型评估的数量,基于广义多项式混沌(GPC)和高斯过程的快速代理模型用于识别影响燃烧区域拓扑和大小的关键参数。本研究调查了这些替代品在理想化的测试用例中计算了Sobol'敏感性指数。比较了替代尺寸和训练类型的替代品的表演以及改变参数化和算法的选择。特别地,测试GPC代理的不同类型的截断和投影策略。基于稀疏最小角度回归(LAR)和低差异哈尔顿序列,使用GPC策略实现了最佳性能。尽管如此,基于LAR的GPC代理倾向于过滤从具有大长度级别的参数的信息,这不是基于清洁的GPC代理的情况。已知风驱动火灾传播。结果表明,它是一个更普遍的领先因素,管辖二次火灾。因此,使用稀疏代理是一种有希望的策略来分析新模型及其对野火应用中的输入参数的依赖性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号