首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Exploring the long-term dynamics of perturbed Keplerian motion in high degree potential fields
【24h】

Exploring the long-term dynamics of perturbed Keplerian motion in high degree potential fields

机译:探索高位势场中扰动的开普勒运动的长期动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The long-term dynamics of perturbed Keplerian motion is usually analyzed in simplified models as part of the preliminary design of artificial satellites missions. It is commonly approached by averaging procedures that deal with literal expressions in expanded form. However, there are cases in which the correct description of the dynamics may require full, contrary to simplified, potential models, as is, for instance, the case of low-altitude, high-inclination lunar orbits. In these cases, dealing with literal expressions is yet possible with the help of modern symbolic algebra systems, for which memory handling is no longer an issue. Still, the efficient evaluation of the averaged expressions related to a high fidelity potential is often jeopardized for the expanded character of the output of the automatic algebraic process, which unavoidably provides huge expressions that commonly comprise tens of thousands of literal terms. Rearrangement of the output to generate an efficient numerical code may solve the problem, but automatization of this kind of post-processing is a non trivial task due to the ad-hoc heuristic simplification procedures involved in the optimization process. However, in those cases in which the coupling of different perturbations is not of relevance for the analysis, the averaging procedure may preserve the main features of the structure of the potential model, thus avoiding the need of the typical blind computer-based brut force perturbation approach. Indeed, we show how standard recursions in the literature may be used to efficiently replace the brut force approach, in this way avoiding the need of further simplification to improve performance evaluation. In particular, Kaula's seminal recursion formulas for the gravity potential reveal clearly superior to the use of both expanded expressions and other recursions more recently proposed in the literature. Thus, after making a general assessment on the computational efficiency of the different approaches to compute the zonal gravitational potential in mean elements, the need of using high degrees of the gravitational potential for mission design purposes is illustrated for the case of a low lunar orbit. (C) 2019 Elsevier B.V. All rights reserved.
机译:作为人工卫星任务初步设计的一部分,通常在简化的模型中分析摄动开普勒运动的长期动力学。通常通过对处理扩展形式的文字表达式的过程求平均来实现。但是,在某些情况下,对动力学的正确描述可能需要完整的,而不是简化的潜在模型,例如低空,高倾角月球轨道的情况。在这些情况下,借助现代符号代数系统仍可以处理文字表达式,对于这些系统而言,不再需要内存处理。尽管如此,由于自动代数过程的输出的扩展特性经常会危及与高保真度相关的平均表达式的有效评估,这不可避免地会提供通常包含成千上万个文字项的巨大表达式。重新排列输出以生成有效的数字代码可以解决该问题,但是由于优化过程中涉及的临时启发式简化程序,这种后处理的自动化并非易事。但是,在那些不同的扰动耦合与分析无关的情况下,平均过程可以保留潜在模型结构的主要特征,从而避免了典型的基于计算机的盲目的布鲁特力扰动方法。确实,我们展示了如何使用文献中的标准递归有效地替代布鲁特法,从而避免了进一步简化以改善性能评估的需要。特别是,针对引力势的Kaula精算递归公式显示出明显优于文献中最近提出的扩展表达式和其他递归的使用。因此,在对不同方法的计算效率进行了总体评估之后,计算了平均元素中的纬向重力势,在月球轨道较低的情况下,说明了需要将高重力势用于任务设计目的。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号