首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays
【24h】

Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays

机译:具有时变时滞的脉冲分数阶复值BAM神经网络的全局Mittag-Leffler稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the stability of impulsive fractional-order complex-valued BAM neural networks with time varying delays. As the extension of fractional-order real-valued BAM neural networks, fractional-order complex-valued BAM neural networks have complex-valued states, synaptic weights, and the activation functions. Two different kinds of activation functions are considered, along with popular bounded and Lipschitz-kind activation functions. By using Lyapunov function and Homomorphic mapping theorem, sufficient conditions for the existence of unique equilibrium and global asymptotic stability of complex-valued systems are derived. In derivation we separated nonlinear complex-valued activation functions into real and imaginary parts. Moreover, Mittag-Leffler stability for BAM neural networks(BAMNNs) have been proposed when the nonlinear complex activation functions are bounded. Simulation results are presented to prove the efficiency of the obtained methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文研究具有时变时滞的脉冲分数阶复数值BAM神经网络的稳定性。作为分数阶实值BAM神经网络的扩展,分数阶复值BAM神经网络具有复数值状态,突触权重和激活函数。考虑了两种不同类型的激活函数,以及流行的有界和Lipschitz类激活函数。利用李雅普诺夫函数和同态映射定理,推导了复值系统唯一平衡和全局渐近稳定性存在的充分条件。在推导中,我们将非线性复值激活函数分为实部和虚部。此外,提出了当约束非线性复杂激活函数时,BAM神经网络的Mittag-Leffler稳定性。仿真结果证明了所提方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号