首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Exponential stability of inertial BAM neural network with time-varying impulses and mixed time-varying delays via matrix measure approach
【24h】

Exponential stability of inertial BAM neural network with time-varying impulses and mixed time-varying delays via matrix measure approach

机译:时变脉冲和时变混合时滞的惯性BAM神经网络的指数稳定性的矩阵测度方法

获取原文
获取原文并翻译 | 示例

摘要

This article is concerned with the effects of time-varying impulses on exponential stability to a unique equilibrium point of inertial Bidirectional Associative Memories (BAM) neural network with mixed time-varying delays. A suitable variable transformation is chosen to transform the original system into a system of first order differential equations. The concept of homeomorphism has been implemented to find a distributed delay-dependent sufficient condition which assures that the system has a unique equilibrium point. In order to study the impulsive effects on stability problems, a time-varying impulses, including stabilizing and destabilizing impulses, are considered with the transformed system. Based on the matrix measure approach and an extended impulsive differential inequality for a time-varying delayed system, we have derived sufficient criteria in matrix measure form which ensure the exponential stability of the system towards an equilibrium point for two classes of activation functions. Further, different convergence rates of the system's trajectory have been discussed for the cases of time-varying stabilizing and destabilizing impulses using the concept of an average impulsive interval. Finally, the efficiency of the theoretical results has been illustrated by providing two numerical examples. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文关注时变脉冲对具有混合时变时滞的惯性双向联想记忆(BAM)神经网络的唯一平衡点的指数稳定性的影响。选择合适的变量变换以将原始系统变换为一阶微分方程组。已经实现了同胚的概念,以找到依赖于延迟的分布式充分条件,该条件可确保系统具有唯一的平衡点。为了研究对稳定性问题的脉冲效应,在转换后的系统中考虑了随时间变化的脉冲,包括稳定和不稳定的脉冲。基于时变时滞系统的矩阵测度方法和扩展的脉冲微分不等式,我们以矩阵测度形式导出了足够的准则,这些准则可确保系统针对两类激活函数的平衡点具有指数稳定性。此外,使用平均脉冲间隔的概念,针对时变稳定和不稳定脉冲的情况,讨论了系统轨迹的不同收敛速率。最后,通过提供两个数值示例说明了理论结果的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号