首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >On the series representation of nabla discrete fractional calculus
【24h】

On the series representation of nabla discrete fractional calculus

机译:关于Nabla离散分数演算的级数表示

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the description and analysis problems of nabla discrete fractional calculus. The series representation framework is developed first, including two Taylor series expanded at the initial instant and the current time, respectively. Under this framework, several essential properties of fractional sum/difference are presented and investigated. Notably, the short memory principle is introduced for nabla discrete fractional calculus, along with which two corresponding series are studied. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文解决了nabla离散分数演算的描述和分析问题。首先开发了序列表示框架,包括分别在初始时刻和当前时间扩展的两个泰勒序列。在此框架下,提出并研究了分数和/差的几个基本属性。值得注意的是,针对纳布拉离散分数微积分引入了短存储原理,并研究了两个相应的级数。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号