首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A gray-encoded, hybrid-accelerated, genetic algorithm for global optimizations in dynamical systems
【24h】

A gray-encoded, hybrid-accelerated, genetic algorithm for global optimizations in dynamical systems

机译:用于动态系统全局优化的灰色编码,混合加速遗传算法

获取原文
获取原文并翻译 | 示例

摘要

A gray-encoded hybrid accelerating genetic algorithm (GHAGA) with Nelder-Mead simplex searching operator and simplex algorithm is developed for the global optimization of dynamical systems. The corresponding convergence theorem is developed to guarantee the new algorithm to be convergent. The efficiency of the new algorithm is verified by application of several well-investigated nonlinear functions. This algorithm overcomes any Hamming-cliff phenomena in existing genetic methods, and it is very efficient for optimizing nonlinear models compared to existing genetic algorithms and other traditional optimization methods.
机译:针对动力学系统的全局优化,提出了一种具有Nelder-Mead单纯形搜索算子和单纯形算法的灰色编码混合加速遗传算法(GHAGA)。开发了相应的收敛定理,以保证新算法收敛。新算法的有效性通过应用几个经过充分研究的非线性函数得到了验证。该算法克服了现有遗传方法中的任何汉明悬崖现象,并且与现有遗传算法和其他传统优化方法相比,它对于优化非线性模型非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号