首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >On orthogonal polynomial approximation with the dimensional expanding technique for precise time integration in transient analysis
【24h】

On orthogonal polynomial approximation with the dimensional expanding technique for precise time integration in transient analysis

机译:用维数展开技术进行正交多项式逼近,以便进行瞬态分析中的精确时间积分

获取原文
获取原文并翻译 | 示例

摘要

We use four orthogonal polynomial series,vLegendre, Chebyshev, Hermite and Laguerre series, to approximate the non-homogeneous term for the precise time integration and incorporate them with the dimensional expanding technique. They are applied to various structures subjected to transient dynamic loading together with Fourier and Taylor approximation proposed in previous works. Numerical examples show that all six methods are efficient and have reasonable precision. In particular, Legendre approximation has much higher precision and better convergence; Chebyshev approximation is also good, but only slightly inferior to Legendre approximation. The other four approximation methods usually produce results with errors hundreds of thousands of times larger. Hermite and Laguerre approximation may be useful for some special non-homogeneous terms, but do not work sufficiently well in our numerical examples. Other contributions of this paper include, a Dynamic Programming scheme for computing series coefficients, a general formula to find the assistant matrix for any polynomial series.
机译:我们使用四个正交多项式级数,vLegendre,Chebyshev,Hermite和Laguerre级数来近似非齐次项以进行精确的时间积分,并将它们与量纲扩展技术结合在一起。它们与先前工作中提出的傅里叶和泰勒近似一起应用于承受瞬态动态载荷的各种结构。数值算例表明,这六种方法都是有效的并且具有合理的精度。特别地,Legendre逼近具有更高的精度和更好的收敛性。切比雪夫(Chebyshev)近似也不错,但仅次于勒让德(Legendre)近似。其他四种近似方法通常产生的结果的误差要大几十万倍。 Hermite和Laguerre近似对于某些特殊的非齐次项可能有用,但在我们的数值示例中效果不佳。本文的其他贡献包括:用于计算序列系数的动态编程方案,用于查找任何多项式序列的辅助矩阵的通用公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号