首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Applying A Recurrence Plot Scheme To Analyze Non-stationary Transition Patterns Of Ip-network Traffic
【24h】

Applying A Recurrence Plot Scheme To Analyze Non-stationary Transition Patterns Of Ip-network Traffic

机译:应用递归图方案分析Ip网络流量的非平稳过渡模式

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a recurrence plot (RP) approach to the analysis of non-stationary transition patterns of IP-network traffic. To get a quantitative measure of dynamical transition patterns of IP-network traffic, we used the values of determinism (DET) defined by the recurrence quantification analysis (RQA). Also, when evaluating the fractal-based properties of IP-network traffic, we focused on two parameters: (ⅰ) the long-range dependence (LRD)-related scaling parameter α derived from the detrended fluctuation analysis (DFA) and (ⅱ) the range of the generalized fractal dimension. In applying this method to traffic analysis, we performed two kinds of traffic measurement in Tokyo, Japan, and derived the values of DET and fractal-based parameters of IP-network traffic over time. In checking the measured network traffic, we found that the characteristic with respect to DET and self-similarity seen in the measured network traffic fluctuated over time, with different time-variation patterns for two measurement locations. Results also confirmed that a larger value of DET or accumulated DET reflected increases in the degree of LRD of IP-network traffic and that the accumulated DET reflected the decreases in the degree of multi-fractality of IP-network traffic. As a result, we confirmed that RP-based measures can be effective for evaluating the non-stationary transition patterns of IP-network traffic in terms of quantitative fractal-based properties.
机译:本文介绍了一种递归图(RP)方法,用于分析IP网络流量的非平稳过渡模式。为了定量评估IP网络流量的动态过渡模式,我们使用了由循环量化分析(RQA)定义的确定性(DET)值。另外,在评估IP网络流量的基于分形的属性时,我们集中在两个参数上:(ⅰ)从去趋势波动分析(DFA)得出的与长期依赖(LRD)相关的缩放参数α和(ⅱ)广义分形维数的范围。在将此方法应用于流量分析时,我们在日本东京进行了两种流量测量,并得出了IP网络流量随时间的DET值和基于分形的参数。在检查测得的网络流量时,我们发现测得的网络流量中关于DET和自相似性的特性随时间波动,两个测量位置的时变模式不同。结果还证实,较大的DET值或累积的DET反映了IP网络流量的LRD程度的增加,并且累积的DET反映了IP网络流量的多重性程度的降低。结果,我们证实了基于RP的措施可以有效地评估基于定量分形属性的IP网络流量的非平稳过渡模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号