首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems
【24h】

Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems

机译:拉格朗日描述符:揭示一般时间相关动力系统相空间结构的一种方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we develop new techniques for revealing geometrical structures in phase space that are valid for aperiodically time dependent dynamical systems, which we refer to as Lagrangian descriptors. These quantities are based on the integration, for a finite time, along trajectories of an intrinsic bounded, positive geometrical and/or physical property of the trajectory itself. We discuss a general methodology for constructing Lagrangian descriptors, and we discuss a "heuristic argument" that explains why this method is successful for revealing geometrical structures in the phase space of a dynamical system. We support this argument by explicit calculations on a benchmark problem having a hyperbolic fixed point with stable and unstable manifolds that are known analytically. Several other benchmark examples are considered that allow us the assess the performance of Lagrangian descriptors in revealing invariant tori and regions of shear. Throughout the paper "side-by-side" comparisons of the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages") are carried out and discussed. In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We also perform computations for an explicitly three dimensional, aperiodically time-dependent vector field and an aperiodically time dependent vector field defined as a data set. Comparisons with FTLEs and time averages for these examples are also carried out, with similar conclusions as for the benchmark examples.
机译:在本文中,我们开发了用于揭示相空间中几何结构的新技术,这些技术对于非周期时间动力系统有效,我们将其称为拉格朗日描述符。这些量基于在有限时间内沿着轨迹本身的固有有界,正几何和/或物理特性的轨迹的积分。我们讨论了构造拉格朗日描述符的一般方法,并讨论了“启发式论点”,它解释了为什么此方法成功地揭示了动力学系统相空间中的几何结构。我们通过对具有双曲不动点,具有稳定和不稳定流形的基准问题进行显式计算来支持此论点,这在分析上是已知的。考虑了其他几个基准示例,这些示例使我们能够评估拉格朗日描述符在揭示不变的花托和剪切区域方面的性能。在整篇论文中,拉格朗日描述符的性能与有限时间Lyapunov指数(FTLE)和矢量场某些分量的有限时间平均值(“时间平均值”)进行了“并排”比较。在所有情况下,拉格朗日描述符都比这些方法更准确,计算效率更高。我们还对显式三维,非时间相关矢量场和定义为数据集的非时间相关矢量场进行计算。还对这些示例进行了FTLE和时间平均值的比较,得出的结论与基准示例相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号